Given the functions
[tex]\[ f(x) = x^2 + 1 \][/tex]
and
[tex]\[ g(x) = 5 - x, \][/tex]
find [tex]\((f + g)(x)\)[/tex].

A. [tex]\( x^2 + x - 4 \)[/tex]
B. [tex]\( x^2 + x + 4 \)[/tex]
C. [tex]\( x^2 - x + 6 \)[/tex]
D. [tex]\( x^2 + x + 6 \)[/tex]



Answer :

Alright, let's find the expression for [tex]\((f + g)(x)\)[/tex] step-by-step.

Given:
[tex]\( f(x) = x^2 + 1 \)[/tex]
[tex]\( g(x) = 5 - x \)[/tex]

We need to find [tex]\((f + g)(x)\)[/tex].

1. [tex]\((f + g)(x)\)[/tex] represents the sum of the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]

2. Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] into the equation:
[tex]\[ (f + g)(x) = (x^2 + 1) + (5 - x) \][/tex]

3. Combine like terms:
[tex]\[ (f + g)(x) = x^2 + 1 + 5 - x \][/tex]

4. Simplify the expression by combining the constants and like terms:
[tex]\[ (f + g)(x) = x^2 - x + 6 \][/tex]

So, [tex]\((f + g)(x)\)[/tex] is [tex]\(x^2 - x + 6\)[/tex].

From the given choices, the correct answer is:
[tex]\(x^2 - x + 6\)[/tex].