To solve this problem, we need to find the perimeter and the area of a rectangle with the given dimensions: a length of 12 feet and a width of 3 feet.
### Step-by-Step Solution:
#### Perimeter of the Rectangle
1. Formula for the perimeter:
The perimeter [tex]\( P \)[/tex] of a rectangle is calculated using the formula:
[tex]\[
P = 2 \times (\text{length} + \text{width})
\][/tex]
2. Substitute the given values:
Here, the length ([tex]\( l \)[/tex]) is 12 feet and the width ([tex]\( w \)[/tex]) is 3 feet. Substitute these values into the formula:
[tex]\[
P = 2 \times (12 + 3)
\][/tex]
3. Simplify the expression:
First, add the length and width:
[tex]\[
12 + 3 = 15
\][/tex]
Then, multiply by 2:
[tex]\[
2 \times 15 = 30
\][/tex]
4. Result for the perimeter:
[tex]\[
P = 30 \text{ feet}
\][/tex]
#### Area of the Rectangle
1. Formula for the area:
The area [tex]\( A \)[/tex] of a rectangle is calculated using the formula:
[tex]\[
A = \text{length} \times \text{width}
\][/tex]
2. Substitute the given values:
Using the length ([tex]\( l \)[/tex]) of 12 feet and the width ([tex]\( w \)[/tex]) of 3 feet, the formula becomes:
[tex]\[
A = 12 \times 3
\][/tex]
3. Simplify the expression:
[tex]\[
12 \times 3 = 36
\][/tex]
4. Result for the area:
[tex]\[
A = 36 \text{ square feet}
\][/tex]
### Final Answer:
- The perimeter of the rectangle is 30 feet.
- The area of the rectangle is 36 square feet.