Answer :

Alright, let's go through the expression step by step.

Given the expression:
[tex]\[ \left[\left(x^n \right)^{n - \frac{1}{n}}\right]^{\frac{1}{n+1}} \][/tex]

First, let's simplify the inner term:
[tex]\[ \left(x^n\right)^{n - \frac{1}{n}} \][/tex]

To simplify this, we use the property of exponents [tex]\((a^{m})^{k} = a^{m \cdot k}\)[/tex]:

[tex]\[ \left(x^n \right)^{n - \frac{1}{n}} = x^{n \cdot \left(n - \frac{1}{n}\right)} \][/tex]

Next, let's compute the exponent inside the parentheses:

[tex]\[ n \cdot \left(n - \frac{1}{n}\right) = n^2 - 1 \][/tex]

So we get:
[tex]\[ x^{n^2 - 1} \][/tex]

Now, let's substitute this back into the original outer expression:
[tex]\[ \left(x^{n^2 - 1}\right)^{\frac{1}{n + 1}} \][/tex]

Again, we apply the property of exponents [tex]\((a^{m})^{k} = a^{m \cdot k}\)[/tex]:

[tex]\[ x^{(n^2 - 1) \cdot \frac{1}{n + 1}} \][/tex]

Thus, the final simplified expression becomes:
[tex]\[ x^{\frac{n^2 - 1}{n + 1}} \][/tex]

So, the complete step-by-step simplification of the given expression is:
[tex]\[ \left[\left(x^n\right)^{n - \frac{1}{n}}\right]^{\frac{1}{n+1}} = x^{\frac{n^2 - 1}{n+1}} \][/tex]