Answer :
To determine the value of one Angstrom in meters, we need to recall its standard definition in the field of science. One Angstrom ([tex]\( 1 \AA \)[/tex]) is a unit of length commonly used to express atomic and molecular scales.
One Angstrom is defined as:
[tex]\[ 1 \AA = 10^{-10} \text{ meters} \][/tex]
Now, let's analyze the given options to see which one correctly matches this definition:
a. [tex]\( 10^{-8} \text{ meters} \)[/tex]
b. [tex]\( 10^{-10} \text{ cm} \)[/tex]
c. [tex]\( 10^{-7} \text{ mm} \)[/tex]
d. [tex]\( 10^{-6} \text{ meters} \)[/tex]
The correct definition tells us that one Angstrom is equal to [tex]\( 10^{-10} \)[/tex] meters. Therefore, the correct choice is not explicitly listed, but the closest match in meters would be understood:
[tex]\[ \text{None of the provided options exactly matches the correct answer of } 10^{-10} \text{ meters}.\][/tex]
If we were to select the option that reflects this the closest in terms of meters, but converted to centimeters:
Thus, if we cross-examine each option:
a. [tex]\( 10^{-8} \text{ meters} \)[/tex] do not match [tex]\( 10^{-10} \text{ meters} \)[/tex].
b. [tex]\( 10^{-10} \text{ cm} \)[/tex]: In centimeters, this would equate to [tex]\( 10^{-12} \text{ meters} (as \( 1 \text{ cm} = 10^{-2} \text{ meters}) \)[/tex].
c. [tex]\( 10^{-7} \text{ mm} \)[/tex]: In millimeters, equating [tex]\( 10^{-10} \text{ meters} \)[/tex] would imply multiplying and shifting the decimal notation.
d. [tex]\( 10^{-6} \text{ meters} \)[/tex]: This also does not match [tex]\( 10^{-10} \text{ meters} \)[/tex].
So the confirmed definition that [tex]\( A is 10^{-10} \)[/tex] meters is not among options (however if matched in terms of closely converting [tex]\( b \)[/tex] )
Therefore, we confirm:
In terms of multiple choices: Correct Answer = None
One Angstrom is defined as:
[tex]\[ 1 \AA = 10^{-10} \text{ meters} \][/tex]
Now, let's analyze the given options to see which one correctly matches this definition:
a. [tex]\( 10^{-8} \text{ meters} \)[/tex]
b. [tex]\( 10^{-10} \text{ cm} \)[/tex]
c. [tex]\( 10^{-7} \text{ mm} \)[/tex]
d. [tex]\( 10^{-6} \text{ meters} \)[/tex]
The correct definition tells us that one Angstrom is equal to [tex]\( 10^{-10} \)[/tex] meters. Therefore, the correct choice is not explicitly listed, but the closest match in meters would be understood:
[tex]\[ \text{None of the provided options exactly matches the correct answer of } 10^{-10} \text{ meters}.\][/tex]
If we were to select the option that reflects this the closest in terms of meters, but converted to centimeters:
Thus, if we cross-examine each option:
a. [tex]\( 10^{-8} \text{ meters} \)[/tex] do not match [tex]\( 10^{-10} \text{ meters} \)[/tex].
b. [tex]\( 10^{-10} \text{ cm} \)[/tex]: In centimeters, this would equate to [tex]\( 10^{-12} \text{ meters} (as \( 1 \text{ cm} = 10^{-2} \text{ meters}) \)[/tex].
c. [tex]\( 10^{-7} \text{ mm} \)[/tex]: In millimeters, equating [tex]\( 10^{-10} \text{ meters} \)[/tex] would imply multiplying and shifting the decimal notation.
d. [tex]\( 10^{-6} \text{ meters} \)[/tex]: This also does not match [tex]\( 10^{-10} \text{ meters} \)[/tex].
So the confirmed definition that [tex]\( A is 10^{-10} \)[/tex] meters is not among options (however if matched in terms of closely converting [tex]\( b \)[/tex] )
Therefore, we confirm:
In terms of multiple choices: Correct Answer = None