Select the correct answer.

What is the value of this expression when [tex]c=-4[/tex] and [tex]d=10[/tex]?

[tex]\[ \frac{1}{4}\left(c^3+d^2\right) \][/tex]

A. 2
B. 9
C. 21
D. 41



Answer :

Let's break down the problem step by step to find the value of the expression [tex]\(\frac{1}{4} \left( c^3 + d^2 \right)\)[/tex] when [tex]\(c = -4\)[/tex] and [tex]\(d = 10\)[/tex].

1. First, substitute the values of [tex]\(c\)[/tex] and [tex]\(d\)[/tex] into the expression [tex]\(c^3 + d^2\)[/tex]:
[tex]\[ (-4)^3 + 10^2 \][/tex]

2. Calculate [tex]\((-4)^3\)[/tex]:
[tex]\[ (-4) \times (-4) \times (-4) = -64 \][/tex]

3. Calculate [tex]\(10^2\)[/tex]:
[tex]\[ 10 \times 10 = 100 \][/tex]

4. Add the two results together:
[tex]\[ -64 + 100 = 36 \][/tex]

5. Finally, multiply the result by [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} \times 36 = 9 \][/tex]

Therefore, the value of the expression is [tex]\(\boxed{9}\)[/tex]. So, the correct answer is:
[tex]\[ \boxed{9} \][/tex]