To determine whether the point [tex]\((0, 3)\)[/tex] satisfies the equation [tex]\(y = x + 3\)[/tex], follow these steps:
1. Identify the coordinates: The point given is [tex]\((0, 3)\)[/tex], where [tex]\(x = 0\)[/tex] and [tex]\(y = 3\)[/tex].
2. Substitute [tex]\(x\)[/tex] into the equation:
- The equation is [tex]\(y = x + 3\)[/tex].
- Substitute [tex]\(x = 0\)[/tex] into the equation.
- This gives [tex]\(y = 0 + 3\)[/tex].
3. Simplify the equation:
- [tex]\(y = 3\)[/tex].
4. Compare the result with the y-coordinate:
- The simplified value [tex]\(y = 3\)[/tex] matches the y-coordinate of the given point, which is 3.
Since the value after substitution matches the given y-coordinate, the point [tex]\((0, 3)\)[/tex] does satisfy the equation [tex]\(y = x + 3\)[/tex].
Therefore, [tex]\((0, 3)\)[/tex] makes the equation [tex]\(y = x + 3\)[/tex] true.
### Answer: Yes