4) Calculate the arithmetic average of the following data using alternative methods:

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Weekly wages of workers (Rs.)} & \text{No. of Workers} \\
\hline
100-105 & 200 \\
\hline
105-110 & 210 \\
\hline
110-115 & 230 \\
\hline
115-120 & 320 \\
\hline
120-125 & 350 \\
\hline
125-130 & 320 \\
\hline
130-135 & 410 \\
\hline
135-140 & 320 \\
\hline
140-145 & 280 \\
\hline
145-150 & 210 \\
\hline
150-155 & 160 \\
\hline
155-160 & 90 \\
\hline
\end{array}
\][/tex]



Answer :

To calculate the arithmetic average (mean) of the given data, we should follow these steps:

1. Determine the Midpoints of Each Interval:
- For each interval of weekly wages, calculate the midpoint (average of the lower and upper limits of the interval).

2. Calculate the Total Sum of Weekly Wages:
- Multiply each midpoint by the number of workers in that interval to find the total wage contribution of each interval.
- Sum these contributions to get the total sum of weekly wages for all workers.

3. Find the Total Number of Workers:
- Sum the number of workers across all intervals.

4. Compute the Arithmetic Average:
- Divide the total sum of weekly wages by the total number of workers.

### Step-by-Step Solution

1. Calculate the Midpoints:

[tex]\[ \text{Midpoints} = \left\{ \frac{(100 + 105)}{2}, \frac{(105 + 110)}{2}, \frac{(110 + 115)}{2}, \frac{(115 + 120)}{2}, \frac{(120 + 125)}{2}, \frac{(125 + 130)}{2}, \frac{(130 + 135)}{2}, \frac{(135 + 140)}{2}, \frac{(140 + 145)}{2}, \frac{(145 + 150)}{2}, \frac{(150 + 155)}{2}, \frac{(155 + 160)}{2} \right\} \][/tex]

Calculating these midpoints:
[tex]\[ \text{Midpoints} = \left\{ 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5 \right\} \][/tex]

2. Calculate the Total Sum of Weekly Wages:

Multiply each midpoint by the corresponding number of workers and sum these products:
[tex]\[ \begin{align*} & 102.5 \times 200 \\ & + 107.5 \times 210 \\ & + 112.5 \times 230 \\ & + 117.5 \times 320 \\ & + 122.5 \times 350 \\ & + 127.5 \times 320 \\ & + 132.5 \times 410 \\ & + 137.5 \times 320 \\ & + 142.5 \times 280 \\ & + 147.5 \times 210 \\ & + 152.5 \times 160 \\ & + 157.5 \times 90 \\ \end{align*} \][/tex]

The resulting total sum of weekly wages is:
[tex]\[ \text{Total Sum of Weekly Wages} = 398000.0 \][/tex]

3. Find the Total Number of Workers:

Sum the number of workers across all intervals:
[tex]\[ \text{Total Number of Workers} = 200 + 210 + 230 + 320 + 350 + 320 + 410 + 320 + 280 + 210 + 160 + 90 \][/tex]

This sums to:
[tex]\[ \text{Total Number of Workers} = 3100 \][/tex]

4. Compute the Arithmetic Average:

Divide the total sum of weekly wages by the total number of workers:
[tex]\[ \text{Arithmetic Average} = \frac{\text{Total Sum of Weekly Wages}}{\text{Total Number of Workers}} = \frac{398000.0}{3100} \][/tex]

Simplifying this gives:
[tex]\[ \text{Arithmetic Average} \approx 128.38709677419354 \text{ Rs} \][/tex]

Therefore, the arithmetic average of the weekly wages of the workers is approximately Rs. 128.39.