Answer :
To determine if the point [tex]\((-79, -8)\)[/tex] satisfies the equation [tex]\( y = -79 \)[/tex], we need to substitute the coordinates of the point into the equation and check if it holds true.
1. Identify the point's coordinates:
- The point given is [tex]\((-79, -8)\)[/tex].
- Here, [tex]\( x = -79 \)[/tex] and [tex]\( y = -8 \)[/tex].
2. Substitute the [tex]\( y \)[/tex]-coordinate into the equation [tex]\( y = -79 \)[/tex]:
- The equation given is [tex]\( y = -79 \)[/tex].
- Substitute [tex]\( y = -8 \)[/tex] (the [tex]\( y \)[/tex]-coordinate of the point) into the equation to check if it holds true.
3. Check if the equation holds true:
- According to the equation, [tex]\( y \)[/tex] should equal [tex]\(-79\)[/tex].
- However, the [tex]\( y \)[/tex]-coordinate of the point is [tex]\(-8\)[/tex], not [tex]\(-79\)[/tex].
Clearly, [tex]\(-8\)[/tex] does not equal [tex]\(-79\)[/tex].
Hence, the point [tex]\((-79, -8)\)[/tex] does not satisfy the equation [tex]\( y = -79 \)[/tex].
The answer is:
No
1. Identify the point's coordinates:
- The point given is [tex]\((-79, -8)\)[/tex].
- Here, [tex]\( x = -79 \)[/tex] and [tex]\( y = -8 \)[/tex].
2. Substitute the [tex]\( y \)[/tex]-coordinate into the equation [tex]\( y = -79 \)[/tex]:
- The equation given is [tex]\( y = -79 \)[/tex].
- Substitute [tex]\( y = -8 \)[/tex] (the [tex]\( y \)[/tex]-coordinate of the point) into the equation to check if it holds true.
3. Check if the equation holds true:
- According to the equation, [tex]\( y \)[/tex] should equal [tex]\(-79\)[/tex].
- However, the [tex]\( y \)[/tex]-coordinate of the point is [tex]\(-8\)[/tex], not [tex]\(-79\)[/tex].
Clearly, [tex]\(-8\)[/tex] does not equal [tex]\(-79\)[/tex].
Hence, the point [tex]\((-79, -8)\)[/tex] does not satisfy the equation [tex]\( y = -79 \)[/tex].
The answer is:
No