Let's solve the problem step-by-step.
We are given the coordinates of two points:
- Point [tex]\( P \)[/tex] with coordinates [tex]\( (-2, 7) \)[/tex]
- Point [tex]\( Q \)[/tex] with coordinates [tex]\( (-5, 9) \)[/tex]
The abscissa of a point refers to its x-coordinate. Therefore:
- The abscissa of point [tex]\( P \)[/tex], denoted [tex]\( x_P \)[/tex], is [tex]\( -2 \)[/tex].
- The abscissa of point [tex]\( Q \)[/tex], denoted [tex]\( x_Q \)[/tex], is [tex]\( -5 \)[/tex].
We need to find the value of the abscissa of [tex]\( P \)[/tex] minus the abscissa of [tex]\( Q \)[/tex]. Mathematically, this is written as:
[tex]\[ x_P - x_Q \][/tex]
Substituting the values we have:
[tex]\[ x_P - x_Q = -2 - (-5) \][/tex]
Simplifying the subtraction of a negative number, we get:
[tex]\[ -2 - (-5) = -2 + 5 \][/tex]
Now, performing the addition:
[tex]\[ -2 + 5 = 3 \][/tex]
Thus, the value of the abscissa of [tex]\( P \)[/tex] minus the abscissa of [tex]\( Q \)[/tex] is [tex]\( 3 \)[/tex].
So, the correct answer is:
(a) 3