4) If points [tex]P[/tex] and [tex]Q[/tex] have coordinates [tex](-2, 7)[/tex] and [tex](-5, 9)[/tex] respectively, then the value of (abscissa of [tex]P[/tex]) - (abscissa of [tex]Q[/tex]) is:

(a) 3
(b) -3
(c) -2
(d) 2



Answer :

Let's solve the problem step-by-step.

We are given the coordinates of two points:
- Point [tex]\( P \)[/tex] with coordinates [tex]\( (-2, 7) \)[/tex]
- Point [tex]\( Q \)[/tex] with coordinates [tex]\( (-5, 9) \)[/tex]

The abscissa of a point refers to its x-coordinate. Therefore:
- The abscissa of point [tex]\( P \)[/tex], denoted [tex]\( x_P \)[/tex], is [tex]\( -2 \)[/tex].
- The abscissa of point [tex]\( Q \)[/tex], denoted [tex]\( x_Q \)[/tex], is [tex]\( -5 \)[/tex].

We need to find the value of the abscissa of [tex]\( P \)[/tex] minus the abscissa of [tex]\( Q \)[/tex]. Mathematically, this is written as:
[tex]\[ x_P - x_Q \][/tex]

Substituting the values we have:
[tex]\[ x_P - x_Q = -2 - (-5) \][/tex]

Simplifying the subtraction of a negative number, we get:
[tex]\[ -2 - (-5) = -2 + 5 \][/tex]

Now, performing the addition:
[tex]\[ -2 + 5 = 3 \][/tex]

Thus, the value of the abscissa of [tex]\( P \)[/tex] minus the abscissa of [tex]\( Q \)[/tex] is [tex]\( 3 \)[/tex].

So, the correct answer is:
(a) 3