Type the correct answer in each box. Use numerals instead of words. If necessary, use [tex]$/$[/tex] for the fraction bar(s).

[tex]\[ 3 \frac{5}{5} \][/tex]

The expression above can also be written in the form [tex]\(\sqrt[4]{a^b}\)[/tex].

For this expression:

[tex]\[ a = \square \][/tex]
[tex]\[ b = \square \][/tex]
[tex]\[ c = \square \][/tex]



Answer :

Let's break down the given expression [tex]\( 3 \frac{5}{5} \)[/tex].

Step 1:
Simplify [tex]\( \frac{5}{5} \)[/tex]:
[tex]\[ \frac{5}{5} = 1 \][/tex]

Step 2:
Multiply 3 by the simplified fraction:
[tex]\[ 3 \times 1 = 3 \][/tex]

Now we need to express this result in the form [tex]\( \sqrt[4]{a^b} \)[/tex]:

Step 3:
Identify the appropriate values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] such that:
[tex]\[ 3 = \sqrt[4]{a^b} \][/tex]

For this particular problem, we observe that the values [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = 4\)[/tex] fit the given expression in the correct form.

Therefore, the final values are:
[tex]\[ a = 3, \ b = 1, \ \text{and} \ c = 4 \][/tex]