Certainly! Let's go through the process step-by-step to determine the total number of candies.
Given the number of candies for each color as follows:
[tex]\[
\begin{align*}
\text{Green Candies} & : 16 \\
\text{Yellow Candies} & : 7 \\
\text{Orange Candies} & : 9 \\
\text{Red Candies} & : 15 \\
\text{Blue Candies} & : 5 \\
\text{Purple Candies} & : 11 \\
\end{align*}
\][/tex]
To find the total number of candies, we need to add together the number of candies of each color:
[tex]\[
\begin{align*}
\text{Total Candies} & = \text{Green Candies} + \text{Yellow Candies} + \text{Orange Candies} + \text{Red Candies} + \text{Blue Candies} + \text{Purple Candies} \\
& = 16 + 7 + 9 + 15 + 5 + 11 \\
& = 63 \\
\end{align*}
\][/tex]
So, the total number of candies is [tex]\(63\)[/tex].
Finally, we can update the table to include the total number of candies:
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Color & Green & Yellow & Orange & Red & Blue & Purple & Total \\
\hline
Number of Candies & 16 & 7 & 9 & 15 & 5 & 11 & 63 \\
\hline
\end{tabular}
Thus, the step-by-step solution has shown us that the total number of candies is [tex]\(63\)[/tex].