Answer :
To simplify the given expression [tex]\(\left(9 x^2 + 10 x + 4\right) - \left(9 x^2 + 5 x - 1\right)\)[/tex], we'll perform the subtraction step-by-step by combining like terms.
1. Subtract the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ 9x^2 - 9x^2 = 0 \][/tex]
2. Subtract the coefficients of [tex]\(x\)[/tex]:
[tex]\[ 10x - 5x = 5x \][/tex]
3. Subtract the constant terms:
[tex]\[ 4 - (-1) = 4 + 1 = 5 \][/tex]
Putting it all together, the simplified form of the expression is:
[tex]\[ 0 x^2 + 5 x + 5 \][/tex]
We can ignore the [tex]\(0 x^2\)[/tex] term because it equals zero. This leaves us with:
[tex]\[ 5x + 5 \][/tex]
The correct answer is:
D. [tex]\(5 x + 5\)[/tex]
1. Subtract the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ 9x^2 - 9x^2 = 0 \][/tex]
2. Subtract the coefficients of [tex]\(x\)[/tex]:
[tex]\[ 10x - 5x = 5x \][/tex]
3. Subtract the constant terms:
[tex]\[ 4 - (-1) = 4 + 1 = 5 \][/tex]
Putting it all together, the simplified form of the expression is:
[tex]\[ 0 x^2 + 5 x + 5 \][/tex]
We can ignore the [tex]\(0 x^2\)[/tex] term because it equals zero. This leaves us with:
[tex]\[ 5x + 5 \][/tex]
The correct answer is:
D. [tex]\(5 x + 5\)[/tex]