Which represents the solution set of [tex]5(x + 5) \ \textless \ 85[/tex]?

A. [tex]x \ \textless \ 12[/tex]
B. [tex]x \ \textgreater \ 12[/tex]
C. [tex]x \ \textless \ 16[/tex]
D. [tex]x \ \textgreater \ 16[/tex]



Answer :

To solve the inequality [tex]\(5(x + 5) < 85\)[/tex], let's proceed step-by-step.

1. Distribute the 5:
[tex]\[ 5(x + 5) = 5x + 25 \][/tex]
So, the inequality becomes:
[tex]\[ 5x + 25 < 85 \][/tex]

2. Isolate the term with the variable x:

Subtract 25 from both sides of the inequality to begin isolating [tex]\(x\)[/tex]:
[tex]\[ 5x + 25 - 25 < 85 - 25 \][/tex]
Simplifying, we get:
[tex]\[ 5x < 60 \][/tex]

3. Solve for x:

Now, divide both sides by 5 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{5x}{5} < \frac{60}{5} \][/tex]
Simplifying, we get:
[tex]\[ x < 12 \][/tex]

Therefore, the solution set for the inequality [tex]\(5(x + 5) < 85\)[/tex] is:
[tex]\[ x < 12 \][/tex]

So, the correct answer is:
[tex]\[ x < 12 \][/tex]