The three sides of a triangular fence have lengths [tex]$3x + 4$, [tex]$y - 5$[/tex], and $7x - 1$[/tex]. What is the total perimeter?

A. [tex]$10x + y - 2$[/tex]
B. [tex][tex]$10x + y + 8$[/tex][/tex]
C. [tex]$10x + y$[/tex]
D. [tex]$3x + y - 2$[/tex]



Answer :

To find the total perimeter of the triangle with sides [tex]\(3x + 4\)[/tex], [tex]\(y - 5\)[/tex], and [tex]\(7x - 1\)[/tex], we need to add up the lengths of all three sides.

1. Write down the expressions for each side:
- First side: [tex]\(3x + 4\)[/tex]
- Second side: [tex]\(y - 5\)[/tex]
- Third side: [tex]\(7x - 1\)[/tex]

2. Sum the expressions to find the perimeter:
[tex]\[ \text{Perimeter} = (3x + 4) + (y - 5) + (7x - 1) \][/tex]

3. Combine like terms:
- Combine the [tex]\(x\)[/tex] terms: [tex]\(3x + 7x = 10x\)[/tex]
- Combine the constant terms: [tex]\(4 - 5 - 1 = -2\)[/tex]

So, we have:
[tex]\[ \text{Perimeter} = 10x + y - 2 \][/tex]

So the total perimeter of the triangle is [tex]\(\boxed{10x + y - 2}\)[/tex].

Other Questions