How could you correctly rewrite the equation [tex]4(10+5)=6(12-2)[/tex] using the distributive property?

A. [tex]40 + 20 = 72 - 12[/tex]

B. [tex]40 + 30 = 72 - 2[/tex]

C. [tex]40 + 5 = 72 - 2[/tex]



Answer :

Sure, let's simplify the equation [tex]\( 4(10 + 5) = 6(12 - 2) \)[/tex] step-by-step by applying the distributive property.

Step 1: Apply the distributive property to both sides of the equation.

- For the left side [tex]\( 4(10 + 5) \)[/tex]:
[tex]\[ 4 \times 10 + 4 \times 5 \][/tex]
This simplifies to:
[tex]\[ 40 + 20 \][/tex]

- For the right side [tex]\( 6(12 - 2) \)[/tex]:
[tex]\[ 6 \times 12 - 6 \times 2 \][/tex]
This simplifies to:
[tex]\[ 72 - 12 \][/tex]

Now, let's rewrite both sides of the equation:

[tex]\[ 40 + 20 = 72 - 12 \][/tex]

So the correct way to rewrite the equation [tex]\( 4(10 + 5) = 6(12 - 2) \)[/tex] using the distributive property is:

[tex]\[ 40 + 20 = 72 - 12 \][/tex]

Therefore, the correct choice from the provided options is:

[tex]\[ 40 + 20 = 72 - 12 \][/tex]