What is the mass of a crate if a net force of [tex]$12 \, \text{N}$[/tex] gives the crate an acceleration of [tex]$0.20 \, \text{m/s}^2$[/tex]?

A. [tex]2.4 \, \text{kg}[/tex]
B. [tex]6 \, \text{kg}[/tex]
C. [tex]12.2 \, \text{kg}[/tex]
D. [tex]60 \, \text{kg}[/tex]



Answer :

To find the mass of a crate given the net force and acceleration, we use Newton's second law of motion, which states:

[tex]\[ F = ma \][/tex]

Here, [tex]\( F \)[/tex] is the net force, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration. We need to solve for the mass [tex]\( m \)[/tex].

Given:
- Net force, [tex]\( F = 12 \, \text{N} \)[/tex]
- Acceleration, [tex]\( a = 0.20 \, \text{m/s}^2 \)[/tex]

We can rearrange the formula to solve for mass [tex]\( m \)[/tex]:

[tex]\[ m = \frac{F}{a} \][/tex]

Substitute the given values into the equation:

[tex]\[ m = \frac{12 \, \text{N}}{0.20 \, \text{m/s}^2} \][/tex]

When you divide 12 by 0.20, you get:

[tex]\[ m = 60 \, \text{kg} \][/tex]

Therefore, the mass of the crate is:

[tex]\[ \boxed{60 \, \text{kg}} \][/tex]