Answer :
To determine the true statement regarding the use of toothpaste by adults, we analyze the data provided in the table.
First, let's review the data from the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{Use toothpaste} & \begin{array}{c} \text{Do not use} \\ \text{toothpaste} \end{array} & \text{Total} \\ \hline \text{Children} & 0.07 & 0.18 & 0.25 \\ \hline \text{Adults} & 0.08 & 0.67 & 0.75 \\ \hline \text{Total} & 0.15 & 0.85 & 1.0 \\ \hline \end{array} \][/tex]
Here, the percentages represent portions of the total population (children and adults combined).
- Total population that use toothpaste: [tex]\(0.15\)[/tex] (or [tex]\(15\%\)[/tex])
- Total population that do not use toothpaste: [tex]\(0.85\)[/tex] (or [tex]\(85\%\)[/tex])
Next, let's dissect the percentages relative to adults:
- Adults who use toothpaste: [tex]\(0.08\)[/tex] (or [tex]\(8\%\)[/tex])
- Adults who do not use toothpaste: [tex]\(0.67\)[/tex] (or [tex]\(67\%\)[/tex])
- Total adults: [tex]\(0.75\)[/tex] (or [tex]\(75\%\)[/tex])
Now let’s evaluate each statement one by one:
A. A smaller percentage of adults (8\%) use the toothpaste.
- We see from the table that [tex]\(0.08\)[/tex], or [tex]\(8\%\)[/tex] of adults use toothpaste. This statement aligns with the data.
B. A greater percentage of adults (about 53\%) use the toothpaste.
- From the table, only [tex]\(8\%\)[/tex] of adults use toothpaste, far less than [tex]\(53\%\)[/tex]. Hence, this statement is incorrect.
C. A greater percentage of adults (75\%) use the toothpaste.
- The table indicates that the total adult population is [tex]\(75\%\)[/tex], but only [tex]\(8\%\)[/tex] of adults use toothpaste. This statement is therefore inaccurate.
D. A smaller percentage of adults (about 11\%) use the toothpaste.
- Again, from the table, [tex]\(8\%\)[/tex] of adults use toothpaste, not [tex]\(11\%\)[/tex]. This statement is also incorrect.
Given these evaluations, the correct statement is:
A. A smaller percentage of adults (8\%) use the toothpaste.
First, let's review the data from the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{Use toothpaste} & \begin{array}{c} \text{Do not use} \\ \text{toothpaste} \end{array} & \text{Total} \\ \hline \text{Children} & 0.07 & 0.18 & 0.25 \\ \hline \text{Adults} & 0.08 & 0.67 & 0.75 \\ \hline \text{Total} & 0.15 & 0.85 & 1.0 \\ \hline \end{array} \][/tex]
Here, the percentages represent portions of the total population (children and adults combined).
- Total population that use toothpaste: [tex]\(0.15\)[/tex] (or [tex]\(15\%\)[/tex])
- Total population that do not use toothpaste: [tex]\(0.85\)[/tex] (or [tex]\(85\%\)[/tex])
Next, let's dissect the percentages relative to adults:
- Adults who use toothpaste: [tex]\(0.08\)[/tex] (or [tex]\(8\%\)[/tex])
- Adults who do not use toothpaste: [tex]\(0.67\)[/tex] (or [tex]\(67\%\)[/tex])
- Total adults: [tex]\(0.75\)[/tex] (or [tex]\(75\%\)[/tex])
Now let’s evaluate each statement one by one:
A. A smaller percentage of adults (8\%) use the toothpaste.
- We see from the table that [tex]\(0.08\)[/tex], or [tex]\(8\%\)[/tex] of adults use toothpaste. This statement aligns with the data.
B. A greater percentage of adults (about 53\%) use the toothpaste.
- From the table, only [tex]\(8\%\)[/tex] of adults use toothpaste, far less than [tex]\(53\%\)[/tex]. Hence, this statement is incorrect.
C. A greater percentage of adults (75\%) use the toothpaste.
- The table indicates that the total adult population is [tex]\(75\%\)[/tex], but only [tex]\(8\%\)[/tex] of adults use toothpaste. This statement is therefore inaccurate.
D. A smaller percentage of adults (about 11\%) use the toothpaste.
- Again, from the table, [tex]\(8\%\)[/tex] of adults use toothpaste, not [tex]\(11\%\)[/tex]. This statement is also incorrect.
Given these evaluations, the correct statement is:
A. A smaller percentage of adults (8\%) use the toothpaste.