Use the quadratic formula to solve for [tex]\( x \)[/tex].

[tex]\[ 2x^2 + 2x = 9 \][/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.

[tex]\[ x = \square \][/tex]



Answer :

To solve the quadratic equation [tex]\(2x^2 + 2x = 9\)[/tex], we first need to rewrite it in standard form [tex]\(ax^2 + bx + c = 0\)[/tex].

Starting from:
[tex]\[ 2x^2 + 2x = 9 \][/tex]

Subtract 9 from both sides to obtain:
[tex]\[ 2x^2 + 2x - 9 = 0 \][/tex]

Here, the coefficients are [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -9\)[/tex].

We will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, calculate the discriminant, [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 2^2 - 4(2)(-9) \][/tex]
[tex]\[ \Delta = 4 + 72 \][/tex]
[tex]\[ \Delta = 76 \][/tex]

Since the discriminant is positive, we will have two distinct real roots.

Next, we find the two solutions using the quadratic formula:

For [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_1 = \frac{-2 + \sqrt{76}}{2(2)} \][/tex]
[tex]\[ x_1 = \frac{-2 + \sqrt{76}}{4} \][/tex]
[tex]\[ x_1 \approx \frac{-2 + 8.72}{4} \][/tex]
[tex]\[ x_1 \approx \frac{6.72}{4} \][/tex]
[tex]\[ x_1 \approx 1.68 \][/tex]

For [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-2 - \sqrt{76}}{2(2)} \][/tex]
[tex]\[ x_2 = \frac{-2 - 8.72}{4} \][/tex]
[tex]\[ x_2 \approx \frac{-10.72}{4} \][/tex]
[tex]\[ x_2 \approx -2.68 \][/tex]

Thus, the solutions to the quadratic equation [tex]\(2x^2 + 2x - 9 = 0\)[/tex] are:

[tex]\[ x \approx 1.68, -2.68 \][/tex]

These results are rounded to the nearest hundredth.