Drag and drop the correct product into the answer box. Write your answer in descending powers of [tex]x[/tex].

Calculate the product:
[tex]\left(x^2 + 3x + 1\right)\left(x^2 + x + 2\right)[/tex]



Answer :

To solve the problem of finding the product [tex]\((x^2 + 3x + 1)(x^2 + x + 2)\)[/tex] and express the result in descending powers of [tex]\(x\)[/tex], follow these steps:

1. Multiply each term of the first polynomial by each term of the second polynomial:

- Start with [tex]\(x^2\)[/tex]:
[tex]\[ x^2 \cdot x^2 = x^4 \][/tex]
[tex]\[ x^2 \cdot x = x^3 \][/tex]
[tex]\[ x^2 \cdot 2 = 2x^2 \][/tex]

- Next, with [tex]\(3x\)[/tex]:
[tex]\[ 3x \cdot x^2 = 3x^3 \][/tex]
[tex]\[ 3x \cdot x = 3x^2 \][/tex]
[tex]\[ 3x \cdot 2 = 6x \][/tex]

- Finally, with [tex]\(1\)[/tex]:
[tex]\[ 1 \cdot x^2 = x^2 \][/tex]
[tex]\[ 1 \cdot x = x \][/tex]
[tex]\[ 1 \cdot 2 = 2 \][/tex]

2. Combine like terms:

- Collect all [tex]\(x^4\)[/tex] terms:
[tex]\[ x^4 \][/tex]

- Collect all [tex]\(x^3\)[/tex] terms:
[tex]\[ x^3 + 3x^3 = 4x^3 \][/tex]

- Collect all [tex]\(x^2\)[/tex] terms:
[tex]\[ 2x^2 + 3x^2 + x^2 = 6x^2 \][/tex]

- Collect all [tex]\(x\)[/tex] terms:
[tex]\[ 6x + x = 7x \][/tex]

- Constant terms:
[tex]\[ 2 \][/tex]

3. Write the final expanded expression in descending order:

[tex]\[ x^4 + 4x^3 + 6x^2 + 7x + 2 \][/tex]

Therefore, the product [tex]\((x^2 + 3x + 1)(x^2 + x + 2)\)[/tex] is:

[tex]\[ \boxed{x^4 + 4x^3 + 6x^2 + 7x + 2} \][/tex]