Which choice is the conjugate of the expression below when [tex] x \geq -5 [/tex]?

[tex] 4 - \sqrt{x+5} [/tex]

A. [tex] 4 - \sqrt{x-5} [/tex]

B. [tex] 4 - \sqrt{x+5} [/tex]

C. [tex] 4 + \sqrt{x-5} [/tex]

D. [tex] 4 + \sqrt{x+5} [/tex]



Answer :

To find the conjugate of the expression [tex]\(4 - \sqrt{x+5}\)[/tex], we need to apply the definition of a conjugate in algebra. The conjugate of any expression of the form [tex]\(a - b\)[/tex] is [tex]\(a + b\)[/tex].

Here, the expression is [tex]\(4 - \sqrt{x+5}\)[/tex]. To form its conjugate, we need to replace the minus sign with a plus sign. Thus, the conjugate of [tex]\(4 - \sqrt{x+5}\)[/tex] would be:

[tex]\[4 + \sqrt{x+5}\][/tex]

To summarize:
- The original expression is [tex]\(4 - \sqrt{x+5}\)[/tex].
- Its conjugate replaces the [tex]\(-\)[/tex] with [tex]\(+\)[/tex].
- Therefore, the conjugate is [tex]\(4 + \sqrt{x+5}\)[/tex].

Given the choices:
A. [tex]\(4 - \sqrt{x-5}\)[/tex]
B. [tex]\(4 - \sqrt{x+5}\)[/tex]
C. [tex]\(4 + \sqrt{x-5}\)[/tex]
D. [tex]\(4 + \sqrt{x+5}\)[/tex]

The correct choice is:
D. [tex]\(4 + \sqrt{x+5}\)[/tex]