The total journey time for this route is always the same.

Work out the time that goes in the gap.
\begin{tabular}{|c|c|c|c|}
\hline Reading & [tex]$13:15$[/tex] & [tex]$13:30$[/tex] & [tex]$14:25$[/tex] \\
\hline Didcot & [tex]$13:25$[/tex] & [tex]$13:50$[/tex] & [tex]$14:40$[/tex] \\
\hline Swindon & [tex]$13:40$[/tex] & [tex]$14:15$[/tex] & [tex]$14:50$[/tex] \\
\hline Bath & [tex]$13:55$[/tex] & [tex]$14:40$[/tex] & [tex]$15:15$[/tex] \\
\hline Bristol & [tex]$14:20$[/tex] & [tex]$14:50$[/tex] & [tex]$15:35$[/tex] \\
\hline Worle & [tex]$14:55$[/tex] & & [tex]$16:05$[/tex] \\
\hline
\end{tabular}



Answer :

Let's determine the missing time in the timetable by following a logical and step-by-step approach. The given data tells us that the journey times for the columns are always the same.

### Step 1: Calculate Journey Times

#### Column 1:
- Journey from Reading to Worle:
- Reading: 13:15
- Worle: 14:55
- Total duration: [tex]\( 14:55 - 13:15 = 1 \text{ hour and } 40 \text{ minutes} \)[/tex]

#### Column 3:
- Journey from Reading to Worle:
- Reading: 14:25
- Worle: 16:05
- Total duration: [tex]\( 16:05 - 14:25 = 1 \text{ hour and } 40 \text{ minutes} \)[/tex]

So the total journey time from Reading to Worle in both columns is 1 hour and 40 minutes.

### Step 2: Apply the Total Journey Time to Column 2

For Column 2:
- The train departs from Reading at 13:30.
- We need to find the arrival time at Worle.

We know that the total travel time is 1 hour and 40 minutes, so let's add this duration to the Reading departure time.

[tex]\[ \text{Reading time (Column 2)} = 13:30 \][/tex]
[tex]\[ \text{Total journey time} = 1 \text{ hour and } 40 \text{ minutes} \][/tex]

Adding these:

[tex]\[ 13:30 + 1 \text{ hour} = 14:30 \][/tex]
[tex]\[ 14:30 + 40 \text{ minutes} = 15:10 \][/tex]

Thus, the arrival time at Worle for Column 2 is:
[tex]\[ \boxed{15:10} \][/tex]

So, the time that goes in the gap for the Worle station in Column 2 is 15:10.