Select the correct answer.

What is the inverse of the function [tex] f(x) = \frac{10}{9} x + 11 [/tex]?

A. [tex] f^{-1}(x) = \frac{10x - 110}{9} [/tex]
B. [tex] f^{-1}(x) = \frac{9x + 11}{10} [/tex]
C. [tex] f^{-1}(x) = \frac{9x - 99}{10} [/tex]
D. [tex] f^{-1}(x) = \frac{9}{10} x + 11 [/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{10}{9} x + 11 \)[/tex], we need to go through the following steps:

1. Rewrite the function as an equation involving [tex]\( y \)[/tex] and [tex]\( x \)[/tex]:
[tex]\[ y = \frac{10}{9} x + 11 \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, subtract 11 from both sides:
[tex]\[ y - 11 = \frac{10}{9} x \][/tex]
- Next, multiply both sides by [tex]\(\frac{9}{10}\)[/tex] to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{9}{10} (y - 11) \][/tex]

3. Simplify the expression:
[tex]\[ x = \frac{9}{10} y - \frac{9}{10} \cdot 11 \][/tex]
[tex]\[ x = \frac{9}{10} y - 9.9 \][/tex]

4. Rearrange the equation to express [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{9}{10} x - 9.9 \][/tex]
Simplify further:
[tex]\[ f^{-1}(x) = \frac{9 x - 99}{10} \][/tex]

Therefore, the inverse function [tex]\( f^{-1}(x) \)[/tex] is [tex]\(\boxed{\frac{9 x - 99}{10}}\)[/tex].

So, the correct answer is:

C. [tex]\( f^{-1}(x) = \frac{9 x - 99}{10} \)[/tex]