Answer :

To solve the expression [tex]\( \frac{6.3506 \times 10^{-5}}{5.62 \times 10^{-12}} \)[/tex], we will follow these steps:

1. Rewrite the expression: Start by rewriting the given expression clearly.
[tex]\[ \frac{6.3506 \times 10^{-5}}{5.62 \times 10^{-12}} \][/tex]

2. Simplify the expression: We can simplify the expression by handling the numerical part and the exponential part separately.

3. Handle the base numbers: Divide the base numbers [tex]\( 6.3506 \)[/tex] by [tex]\( 5.62 \)[/tex].
[tex]\[ \frac{6.3506}{5.62} = 1.13 \][/tex]

4. Handle the exponents: Use the properties of exponents to manage [tex]\( 10^{-5} \)[/tex] and [tex]\( 10^{-12} \)[/tex] when they are divided.
[tex]\[ \frac{10^{-5}}{10^{-12}} = 10^{-5 - (-12)} = 10^{-5 + 12} = 10^7 \][/tex]

5. Combine the results: Now, multiply the base number result by the exponent part.
[tex]\[ 1.13 \times 10^7 = 11,300,000 \][/tex]

Hence, the detailed, step-by-step solution leads us to the final answer:
[tex]\[ \frac{6.3506 \times 10^{-5}}{5.62 \times 10^{-12}} = 11,300,000 \][/tex]

Thus, the answer is:
[tex]\[ 11,300,000 \][/tex]