\begin{tabular}{|c|c|}
\hline
Semester & \begin{tabular}{c}
Student Applications \\
(in thousands)
\end{tabular} \\
\hline
1 & 106 \\
\hline
2 & 137 \\
\hline
3 & 285 \\
\hline
4 & 120 \\
\hline
5 & 202 \\
\hline
6 & 195 \\
\hline
7 & 327 \\
\hline
8 & 139 \\
\hline
9 & 307 \\
\hline
10 & 318 \\
\hline
11 & 212 \\
\hline
12 & 217 \\
\hline
\end{tabular}

What is the approximate sample mean for student applications, in thousands?

A. 2,565
B. [tex]$32.9$[/tex]
C. 256.5
D. 214



Answer :

To find the sample mean for student applications, let's follow these steps:

1. List the data points: The number of student applications for each semester are given as follows:
[tex]\[ 106, 137, 285, 120, 202, 195, 327, 139, 307, 318, 212, 217 \][/tex]

2. Sum the data points: Add all the individual values.
[tex]\[ 106 + 137 + 285 + 120 + 202 + 195 + 327 + 139 + 307 + 318 + 212 + 217 = 2,565 \][/tex]

3. Count the number of data points: There are 12 data points in the list.

4. Calculate the sample mean: The sample mean is the total sum of the data points divided by the number of data points.
[tex]\[ \text{Sample Mean} = \frac{\text{Total Sum of Data Points}}{\text{Number of Data Points}} = \frac{2,565}{12} \approx 213.75 \][/tex]

Given the options:
- A. 2,565 (which is the total sum, not the mean)
- B. 32.9 (which is incorrect)
- C. 256.5 (which is incorrect)
- D. 214

The closest and most appropriate answer is:
[tex]\[ \boxed{214} \][/tex]