Arrange the following fractions in ascending order:

[tex]\[
\frac{2}{8}, \frac{7}{9}, \frac{6}{9}
\][/tex]

Compare the fractions:

[tex]\[
\frac{2}{8} = \frac{1}{4}, \quad \frac{6}{9} = \frac{2}{3}, \quad \frac{5}{9}
\][/tex]

Place the fractions in order:

[tex]\[
\frac{1}{4}, \frac{5}{9}, \frac{2}{3}, \frac{7}{9}
\][/tex]



Answer :

Sure! Let’s break down the question which involves comparing and calculating several fractions.

### Step-by-Step Solution

First, we individually calculate each fraction given:

1. Calculating the first fraction:
[tex]\[ \frac{2}{8} \][/tex]
Simplifying [tex]\(\frac{2}{8}\)[/tex]:
[tex]\[ \frac{2}{8} = \frac{2 \div 2}{8 \div 2} = \frac{1}{4} = 0.25 \][/tex]

2. Calculating the second fraction:
[tex]\[ \frac{7}{9} \][/tex]
The division yields:
[tex]\[ \frac{7}{9} \approx 0.7777777777777778 \][/tex]

3. Calculating the third fraction:
[tex]\[ \frac{6}{9} \][/tex]
Simplifying [tex]\(\frac{6}{9}\)[/tex]:
[tex]\[ \frac{6}{9} = \frac{6 \div 3}{9 \div 3} = \frac{2}{3} \approx 0.6666666666666666 \][/tex]

4. Calculating the fourth fraction:
[tex]\[ \frac{5}{9} \][/tex]
The division yields:
[tex]\[ \frac{5}{9} \approx 0.5555555555555556 \][/tex]

### Final Values:
So we have:
[tex]\[ \frac{2}{8} = 0.25, \quad \frac{7}{9} \approx 0.7777777777777778, \quad \frac{6}{9} \approx 0.6666666666666666, \quad \frac{5}{9} \approx 0.5555555555555556 \][/tex]

Putting all the fractions together, we get:
[tex]\[ (0.25, 0.7777777777777778, 0.6666666666666666, 0.5555555555555556) \][/tex]

These are the decimal equivalents of the given fractions.