1.3. Convert from decimal notation to fractional notation.

a) [tex]0.3 =[/tex]
b) [tex]0.09 =[/tex]
c) [tex]0.429 =[/tex]
d) [tex]0.48 =[/tex]
e) [tex]0.526 =[/tex]
f) [tex]0.123 =[/tex]
g) [tex]0.56 =[/tex]
h) [tex]0.37 =[/tex]
i) [tex]0.432 =[/tex]
j) [tex]0.94 =[/tex]
k) [tex]0.236 =[/tex]
l) [tex]0.9631 =[/tex]



Answer :

Claro, vamos a convertir cada número decimal en su equivalente en fracción.

### a) [tex]\(0.3\)[/tex]

[tex]$0.3 = \frac{3}{10}$[/tex]

### b) [tex]\(0.09\)[/tex]

[tex]$0.09 = \frac{9}{100}$[/tex]

### c) [tex]\(0.429\)[/tex]

[tex]$0.429 = \frac{429}{1000}$[/tex]

### d) [tex]\(0.48\)[/tex]

[tex]$0.48 = \frac{12}{25}$[/tex]

### e) [tex]\(0.526\)[/tex]

[tex]$0.526 = \frac{263}{500}$[/tex]

### f) [tex]\(0.123\)[/tex]

[tex]$0.123 = \frac{123}{1000}$[/tex]

### g) [tex]\(0.56\)[/tex]

[tex]$0.56 = \frac{14}{25}$[/tex]

### h) [tex]\(0.37\)[/tex]

[tex]$0.37 = \frac{37}{100}$[/tex]

### i) [tex]\(0.432\)[/tex]

[tex]$0.432 = \frac{54}{125}$[/tex]

### j) [tex]\(0.94\)[/tex]

[tex]$0.94 = \frac{47}{50}$[/tex]

### k) [tex]\(0.236\)[/tex]

[tex]$0.236 = \frac{59}{250}$[/tex]

### l) [tex]\(0.9631\)[/tex]

[tex]$0.9631 = \frac{9631}{10000}$[/tex]

Entonces, los números decimales convertidos a fracciones son los siguientes:

a) [tex]\(0.3 = \frac{3}{10}\)[/tex]
b) [tex]\(0.09 = \frac{9}{100}\)[/tex]
c) [tex]\(0.429 = \frac{429}{1000}\)[/tex]
d) [tex]\(0.48 = \frac{12}{25}\)[/tex]
e) [tex]\(0.526 = \frac{263}{500}\)[/tex]
f) [tex]\(0.123 = \frac{123}{1000}\)[/tex]
g) [tex]\(0.56 = \frac{14}{25}\)[/tex]
h) [tex]\(0.37 = \frac{37}{100}\)[/tex]
i) [tex]\(0.432 = \frac{54}{125}\)[/tex]
j) [tex]\(0.94 = \frac{47}{50}\)[/tex]
k) [tex]\(0.236 = \frac{59}{250}\)[/tex]
l) [tex]\(0.9631 = \frac{9631}{10000}\)[/tex]