Answer :

Sure! Let’s solve the expression step by step:

[tex]\[ \sqrt[3]{3^2 \times 5^2} \times 2 \sqrt[3]{3 \times 5} \][/tex]

First, we’ll break down the expression into two separate cube roots:

1. Evaluate [tex]\(\sqrt[3]{3^2 \times 5^2}\)[/tex]
2. Evaluate [tex]\(\sqrt[3]{3 \times 5}\)[/tex]
3. Multiply the results together and then multiply by 2.

### Step 1: Evaluate [tex]\(\sqrt[3]{3^2 \times 5^2}\)[/tex]

First, calculate [tex]\(3^2 \times 5^2\)[/tex]:

[tex]\[ 3^2 = 9 \quad \text{and} \quad 5^2 = 25 \][/tex]

[tex]\[ 3^2 \times 5^2 = 9 \times 25 = 225 \][/tex]

Now take the cube root of 225:

[tex]\[ \sqrt[3]{225} \approx 6.0822 \quad \text{(approximately 6.082201995573399)} \][/tex]

### Step 2: Evaluate [tex]\(\sqrt[3]{3 \times 5}\)[/tex]

First, calculate [tex]\(3 \times 5\)[/tex]:

[tex]\[ 3 \times 5 = 15 \][/tex]

Now take the cube root of 15:

[tex]\[ \sqrt[3]{15} \approx 2.4662 \quad \text{(approximately 2.46621207433047)} \][/tex]

### Step 3: Multiply the results and then multiply by 2

Now, multiply the results from Step 1 and Step 2 together:

[tex]\[ 6.0822 \times 2.4662 \approx 14.999999999999996 \quad \text{(approximately 14.999999999999993)} \][/tex]

Finally, multiply by 2:

[tex]\[ 2 \times 14.999999999999996 \approx 30 \quad \text{(approximately 29.999999999999993)} \][/tex]

So, the value of [tex]\(\sqrt[3]{3^2 \times 5^2} \times 2 \sqrt[3]{3 \times 5}\)[/tex] is approximately 30.