To solve this problem, we need to use the formula for distance, which is given by:
[tex]\[ d = s \cdot t \][/tex]
Here, [tex]\( d \)[/tex] represents the distance, [tex]\( s \)[/tex] is the speed, and [tex]\( t \)[/tex] is the time.
In this problem:
- The speed [tex]\( s \)[/tex] is [tex]\( 44 \, \text{m/s} \)[/tex].
- The time [tex]\( t \)[/tex] is [tex]\( 10 \, \text{seconds} \)[/tex].
We substitute these values into the formula:
[tex]\[ d = 44 \, \text{m/s} \cdot 10 \, \text{seconds} \][/tex]
Multiplying these values, we get:
[tex]\[ d = 440 \, \text{meters} \][/tex]
Thus, the car travels a distance of 440 meters in 10 seconds at a speed of 44 meters per second.
The correct answer is:
D. [tex]\( 440 \, \text{m} \)[/tex]