How many moles of [tex]$Ba \left( NO _3\right)_2$[/tex] are there in [tex]0.25 \, L[/tex] of a [tex]2.00 \, M \, Ba \left( NO _3\right)_2[/tex] solution?

Use the formula:
[tex]\text{molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}[/tex]

A. [tex]0.13 \, \text{mol}[/tex]
B. [tex]0.50 \, \text{mol}[/tex]
C. [tex]2.25 \, \text{mol}[/tex]
D. [tex]8.0 \, \text{mol}[/tex]



Answer :

Certainly! Let's solve this step-by-step using the provided information and the formula for molarity.

1. Understand the Given Information:
- Molarity (M) is given as [tex]\(2.00 \ M \)[/tex] (Moles per Liter).
- Volume (V) is given as [tex]\(0.25 \ L \)[/tex].

2. Recall the Formula for Molarity:
[tex]\[ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]

3. Rearrange the Formula to Solve for Moles of Solute:
[tex]\[ \text{Moles of solute} = \text{Molarity (M)} \times \text{Volume (V)} \][/tex]

4. Substitute the Given Values into the Equation:
[tex]\[ \text{Moles of } Ba(NO_3)_2 = 2.00 \ M \times 0.25 \ L \][/tex]

5. Perform the Multiplication:
[tex]\[ \text{Moles of } Ba(NO_3)_2 = 0.50 \ moles \][/tex]

6. Conclusion:
Therefore, the number of moles of [tex]\( Ba(NO_3)_2 \)[/tex] in [tex]\( 0.25 \ L \)[/tex] of a [tex]\( 2.00 \ M \)[/tex] solution is [tex]\( 0.50 \ moles \)[/tex].

So, the correct answer is:
[tex]\[ 0.50 \ mol \][/tex]