What is the value of the expression below?

[tex]\[ \left(6^{1 / 4}\right) \cdot\left(6^{1 / 4}\right) \cdot\left(6^{1 / 4}\right) \cdot\left(6^{1 / 4}\right) \][/tex]

A. 6
B. 36
C. [tex]\(\sqrt{6}\)[/tex]
D. [tex]\(2 \sqrt{6}\)[/tex]



Answer :

To find the value of the expression [tex]\(\left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right)\)[/tex], follow these steps:

1. Identify the Multiplication Property of Exponents:
When you multiply terms with the same base, you add their exponents:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]

2. Apply the Property:
The expression can be rewritten as:
[tex]\[ (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \][/tex]

3. Combine the Exponents:
Since all the exponents are [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ (6^{1/4 + 1/4 + 1/4 + 1/4}) = 6^{1/4 \cdot 4} \][/tex]

4. Simplify the Exponent:
Adding the exponents together:
[tex]\[ 1/4 + 1/4 + 1/4 + 1/4 = 1 \][/tex]
So, the exponent becomes:
[tex]\[ 6^{1} \][/tex]

5. Calculate the Final Result:
[tex]\(6^1\)[/tex] simplifies to:
[tex]\[ 6 \][/tex]

Therefore, the value of the expression [tex]\(\left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right)\)[/tex] is [tex]\(6\)[/tex].

The correct answer is:
[tex]\[ \boxed{6} \][/tex]