Select the values that make the inequality [tex]d \ \textless \ -2[/tex] true. (Numbers written in order from least to greatest going across.)

A. [tex]-10[/tex]
B. [tex]-7[/tex]
C. [tex]-5[/tex]
D. [tex]-3[/tex]
E. [tex]-2.01[/tex]
F. [tex]-2.1[/tex]
G. [tex]-2.001[/tex]

Options not satisfying the inequality:
H. [tex]-2[/tex]
I. [tex]-1.999[/tex]
J. [tex]-1.99[/tex]
K. [tex]-1.9[/tex]
L. [tex]-1[/tex]
M. [tex]1[/tex]
N. [tex]3[/tex]
O. [tex]6[/tex]



Answer :

To address the problem of selecting values that satisfy the inequality [tex]\(d < -2\)[/tex], we must consider each number provided and determine if it is less than [tex]\(-2\)[/tex].

Let's analyze each number one by one:
- [tex]\(-10\)[/tex]: This number is less than [tex]\(-2\)[/tex].
- [tex]\(-7\)[/tex]: This number is also less than [tex]\(-2\)[/tex].
- [tex]\(-3\)[/tex]: This number is less than [tex]\(-2\)[/tex].
- [tex]\(-2.1\)[/tex]: This is less than [tex]\(-2\)[/tex].
- [tex]\(-2.001\)[/tex]: This is less than [tex]\(-2\)[/tex].
- [tex]\(-2\)[/tex]: Since [tex]\(-2\)[/tex] is equal to [tex]\(-2\)[/tex] and not less than [tex]\(-2\)[/tex], it does not satisfy the inequality.
- [tex]\(-5\)[/tex]: This number is less than [tex]\(-2\)[/tex].
- [tex]\(-1.99\)[/tex]: This number is not less than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(-1.9\)[/tex]: This number is not less than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(-2.01\)[/tex]: This number is less than [tex]\(-2\)[/tex].
- [tex]\(1\)[/tex]: This number is greater than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(3\)[/tex]: This number is greater than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(-1.999\)[/tex]: This number is not less than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(-1\)[/tex]: This number is greater than [tex]\(-2\)[/tex], so it does not satisfy the inequality.
- [tex]\(6\)[/tex]: This number is greater than [tex]\(-2\)[/tex], so it does not satisfy the inequality.

After evaluating each number, the values that satisfy the inequality [tex]\(d < -2\)[/tex] are:
[tex]\[ -10, -7, -3, -2.1, -2.001, -5, -2.01 \][/tex]

In ascending order, the values are:
[tex]\[ -10, -7, -5, -3, -2.1, -2.01, -2.001 \][/tex]