An exponential function in the form [tex]f(x)=a b^x + k[/tex] is given.

What is the value of the vertical shift [tex]k[/tex]?

A. 3
B. [tex]-3[/tex]
C. [tex]\frac{1}{3}[/tex]



Answer :

To determine the value of the vertical shift [tex]\(K\)[/tex] in the exponential function [tex]\(f(x) = a b^x + k\)[/tex], we need to identify the constant term in the function's form. This constant term represents the vertical shift [tex]\(K\)[/tex].

Given the options for the vertical shift [tex]\(K\)[/tex]:

1. [tex]\(3\)[/tex]
2. [tex]\(-3\)[/tex]
3. [tex]\(\frac{1}{3}\)[/tex]

We need to consider that the vertical shift [tex]\(K\)[/tex] can be either positive or negative, and any rational number constitutes a valid vertical shift.

Given these considerations, the possible values of [tex]\(K\)[/tex] are:

- [tex]\(3\)[/tex]
- [tex]\(-3\)[/tex]
- [tex]\(\frac{1}{3}\)[/tex] (which is approximately [tex]\(0.3333\)[/tex])

Thus, the values for the vertical shift [tex]\(K\)[/tex] in the exponential function [tex]\(f(x) = a b^x + k\)[/tex] could be:

1. [tex]\(3\)[/tex]
2. [tex]\(-3\)[/tex]
3. [tex]\(\frac{1}{3}\)[/tex]

These values represent the different possible vertical shifts for the given exponential form.