The table represents an exponential function.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & [tex]$\frac{1}{512}$[/tex] & [tex]$\frac{1}{64}$[/tex] & [tex]$\frac{1}{8}$[/tex] & 1 & 8 & 64 & 512 \\
\hline
\end{tabular}

Does the function in the table represent growth or decay?

A. The function represents exponential decay because the base equals [tex]$\frac{1}{8}$[/tex].
B. The function represents exponential growth because the base equals [tex]$\frac{1}{8}$[/tex].
C. The function represents exponential decay because the base equals 8.
D. The function represents exponential growth because the base equals 8.



Answer :

Let's analyze the given table of values, which represents an exponential function.

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline $x$ & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline $y$ & \frac{1}{512} & \frac{1}{64} & \frac{1}{8} & 1 & 8 & 64 & 512 \\ \hline \end{tabular} \][/tex]

1. Identify the Base of the Exponential Function:

Recall that for an exponential function of the form [tex]\( y = a \cdot b^x \)[/tex], where [tex]\(a\)[/tex] is the initial value (which we assume is 1 here because [tex]\( y \)[/tex] equals 1 when [tex]\( x \)[/tex] is 0), and [tex]\( b \)[/tex] is the base. We need to determine the base [tex]\( b \)[/tex].

2. Inspect the Values for [tex]\( x = 1 \)[/tex]:

When [tex]\( x = 1 \)[/tex],
[tex]\[ y = 8 \][/tex]

Therefore, the base [tex]\( b \)[/tex] of the exponential function can be identified from this particular value pair.

3. Verify the Base with Other Values:

To ensure consistency, let's examine the other values provided:
[tex]\[ \begin{align*} x = 2 & : y = 64 \Rightarrow 8^2 = 64 \\ x = -1 & : y = \frac{1}{8} \Rightarrow 8^{-1} = \frac{1}{8} \\ x = -2 & : y = \frac{1}{64} \Rightarrow 8^{-2} = \frac{1}{64} \\ x = 3 & : y = 512 \Rightarrow 8^3 = 512 \\ x = -3 & : y = \frac{1}{512} \Rightarrow 8^{-3} = \frac{1}{512} \end{align*} \][/tex]

4. Determine the Nature of the Exponential Function:

The base [tex]\( b = 8 \)[/tex] is greater than 1, indicating exponential growth.

Consequently, the correct statement is:

- The function represents exponential growth because the base equals 8.