Answer :
Para resolver este problema, necesitamos usar la ecuación de Bernoulli. La ecuación de Bernoulli relaciona la presión, energía cinética y la energía potencial de un fluido que se mueve entre dos puntos.
Los datos que tenemos son:
- Velocidad inicial del agua, [tex]\( v_1 = 4 \, \text{m/s} \)[/tex]
- Presión inicial, [tex]\( P_1 = 32 \, \text{kPa} = 32,000 \, \text{Pa} \)[/tex]
- Presión final, [tex]\( P_2 = 18 \, \text{kPa} = 18,000 \, \text{Pa} \)[/tex]
- Cambio de altura, [tex]\( \Delta h = 2 \, \text{m} \)[/tex]
- Densidad del agua, [tex]\( \rho = 1000 \, \text{kg/m}^3 \)[/tex]
- Aceleración debida a la gravedad, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
La ecuación de Bernoulli es:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Asumimos que el punto inicial está en la planta baja donde la altura ([tex]\(h_1\)[/tex]) es 0. Entonces, [tex]\(h_1 = 0\)[/tex] y [tex]\( h_2 = 2 \, \text{m} \)[/tex].
Ahora sustituimos los valores conocidos en la ecuación de Bernoulli:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Re-estructuramos la ecuación para despejar [tex]\(v_2\)[/tex]:
[tex]\[ \frac{1}{2} \rho v_2^2 = P_1 - P_2 + \frac{1}{2} \rho v_1^2 - \rho g h_2 \][/tex]
Multiplicamos ambos lados por 2 para eliminar el [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \rho v_2^2 = 2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2 \][/tex]
Dividimos entre [tex]\(\rho\)[/tex]:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2}{\rho} \][/tex]
Factorizamos la ecuación:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho(v_1^2 - 2g h_2)}{\rho} \][/tex]
Ahora, sustituimos los valores numéricos:
[tex]\[ v_2^2 = \frac{2(32,000 \, \text{Pa} - 18,000 \, \text{Pa}) + 1000 \left(4^2 \, \text{m}^2/\text{s}^2 - 2 \cdot 9.81 \cdot 2 \, \text{m}^2/\text{s}^2 \right)}{1000} \][/tex]
Resolvemos dentro del paréntesis:
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) + 1000 \left(16 - 39.24 \right) \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) - 1000 \cdot 23.24 \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{28,000 \, \text{Pa} - 23,240 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{4,760 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = 4.76 \, \text{m}^2/\text{s}^2 \][/tex]
Finalmente, tomamos la raíz cuadrada:
[tex]\[ v_2 = \sqrt{4.76} \, \text{m}/\text{s} \][/tex]
[tex]\[ v_2 \approx 2.18 \, \text{m}/\text{s} \][/tex]
Por lo tanto, la velocidad del agua en la tubería 2 m más arriba es aproximadamente [tex]\(2.18 \, \text{m/s}\)[/tex].
Los datos que tenemos son:
- Velocidad inicial del agua, [tex]\( v_1 = 4 \, \text{m/s} \)[/tex]
- Presión inicial, [tex]\( P_1 = 32 \, \text{kPa} = 32,000 \, \text{Pa} \)[/tex]
- Presión final, [tex]\( P_2 = 18 \, \text{kPa} = 18,000 \, \text{Pa} \)[/tex]
- Cambio de altura, [tex]\( \Delta h = 2 \, \text{m} \)[/tex]
- Densidad del agua, [tex]\( \rho = 1000 \, \text{kg/m}^3 \)[/tex]
- Aceleración debida a la gravedad, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
La ecuación de Bernoulli es:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Asumimos que el punto inicial está en la planta baja donde la altura ([tex]\(h_1\)[/tex]) es 0. Entonces, [tex]\(h_1 = 0\)[/tex] y [tex]\( h_2 = 2 \, \text{m} \)[/tex].
Ahora sustituimos los valores conocidos en la ecuación de Bernoulli:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Re-estructuramos la ecuación para despejar [tex]\(v_2\)[/tex]:
[tex]\[ \frac{1}{2} \rho v_2^2 = P_1 - P_2 + \frac{1}{2} \rho v_1^2 - \rho g h_2 \][/tex]
Multiplicamos ambos lados por 2 para eliminar el [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \rho v_2^2 = 2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2 \][/tex]
Dividimos entre [tex]\(\rho\)[/tex]:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2}{\rho} \][/tex]
Factorizamos la ecuación:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho(v_1^2 - 2g h_2)}{\rho} \][/tex]
Ahora, sustituimos los valores numéricos:
[tex]\[ v_2^2 = \frac{2(32,000 \, \text{Pa} - 18,000 \, \text{Pa}) + 1000 \left(4^2 \, \text{m}^2/\text{s}^2 - 2 \cdot 9.81 \cdot 2 \, \text{m}^2/\text{s}^2 \right)}{1000} \][/tex]
Resolvemos dentro del paréntesis:
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) + 1000 \left(16 - 39.24 \right) \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) - 1000 \cdot 23.24 \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{28,000 \, \text{Pa} - 23,240 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{4,760 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = 4.76 \, \text{m}^2/\text{s}^2 \][/tex]
Finalmente, tomamos la raíz cuadrada:
[tex]\[ v_2 = \sqrt{4.76} \, \text{m}/\text{s} \][/tex]
[tex]\[ v_2 \approx 2.18 \, \text{m}/\text{s} \][/tex]
Por lo tanto, la velocidad del agua en la tubería 2 m más arriba es aproximadamente [tex]\(2.18 \, \text{m/s}\)[/tex].