Answer :
Sure, let's translate the given speed of light in a vacuum, which is approximately [tex]\( 299,500,000 \)[/tex] meters per second, into scientific notation. Here's the step-by-step process for converting this number:
1. Identify the Coefficient [tex]\( a \)[/tex]:
- In scientific notation, the number is written in the form [tex]\( a \times 10^b \)[/tex], where [tex]\( 1 \leq a < 10 \)[/tex].
- Move the decimal point so that there is only one non-zero digit to the left of the decimal point.
- For [tex]\( 299,500,000 \)[/tex], if you move the decimal point 8 places to the left, it becomes [tex]\( 2.995 \)[/tex].
2. Determine the Exponent [tex]\( b \)[/tex]:
- Count the number of places you move the decimal point to convert the original number into the coefficient [tex]\( a \)[/tex]. This count gives the exponent [tex]\( b \)[/tex].
- For [tex]\( 299,500,000 \)[/tex], you moved the decimal point 8 places to the left, so [tex]\( b = 8 \)[/tex].
Thus, when writing [tex]\( 299,500,000 \)[/tex] in scientific notation, it becomes:
[tex]\[ 2.995 \times 10^8 \][/tex]
So, the values for [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are:
[tex]\[ a = 2.995 \][/tex]
[tex]\[ b = 8 \][/tex]
Therefore, the speed of light in scientific notation is [tex]\( 2.995 \times 10^8 \)[/tex] meters per second.
1. Identify the Coefficient [tex]\( a \)[/tex]:
- In scientific notation, the number is written in the form [tex]\( a \times 10^b \)[/tex], where [tex]\( 1 \leq a < 10 \)[/tex].
- Move the decimal point so that there is only one non-zero digit to the left of the decimal point.
- For [tex]\( 299,500,000 \)[/tex], if you move the decimal point 8 places to the left, it becomes [tex]\( 2.995 \)[/tex].
2. Determine the Exponent [tex]\( b \)[/tex]:
- Count the number of places you move the decimal point to convert the original number into the coefficient [tex]\( a \)[/tex]. This count gives the exponent [tex]\( b \)[/tex].
- For [tex]\( 299,500,000 \)[/tex], you moved the decimal point 8 places to the left, so [tex]\( b = 8 \)[/tex].
Thus, when writing [tex]\( 299,500,000 \)[/tex] in scientific notation, it becomes:
[tex]\[ 2.995 \times 10^8 \][/tex]
So, the values for [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are:
[tex]\[ a = 2.995 \][/tex]
[tex]\[ b = 8 \][/tex]
Therefore, the speed of light in scientific notation is [tex]\( 2.995 \times 10^8 \)[/tex] meters per second.