Answered

Simplify [tex]3\left(2^2 \times 3^3 \times 5^4\right)^2[/tex].
Give your answer in the form [tex]2^a \times 3^b \times 5^c[/tex].



Answer :

To simplify [tex]\(3\left(2^2 \times 3^3 \times 5^4\right)^2\)[/tex], let's follow these steps:

1. Simplify the expression inside the parentheses:
[tex]\[ 2^2 \times 3^3 \times 5^4 \][/tex]

2. Raise this entire expression to the power of 2:
[tex]\[ \left(2^2 \times 3^3 \times 5^4\right)^2 \][/tex]

When you raise a product of powers to another power, you multiply the exponents. Using the property [tex]\((a^m)^n = a^{mn}\)[/tex]:

[tex]\[ (2^2)^2 \times (3^3)^2 \times (5^4)^2 \][/tex]

Simplify each term inside the parentheses:
[tex]\[ 2^{2 \times 2} \times 3^{3 \times 2} \times 5^{4 \times 2} \][/tex]

3. Calculate the exponents:
[tex]\[ 2^4 \times 3^6 \times 5^8 \][/tex]

4. Now include the multiplication by 3:
[tex]\[ 3 \times \left(2^4 \times 3^6 \times 5^8\right) \][/tex]

We can rewrite this by distributing the multiplication:
[tex]\[ 3^1 \times 2^4 \times 3^6 \times 5^8 \][/tex]

5. Combine the like bases:
[tex]\[ 2^4 \times 3^{1+6} \times 5^8 \][/tex]

Simplify the exponents:
[tex]\[ 2^4 \times 3^7 \times 5^8 \][/tex]

Therefore, the expression [tex]\(3\left(2^2 \times 3^3 \times 5^4\right)^2\)[/tex] simplifies to:

[tex]\[ 2^4 \times 3^7 \times 5^8 \][/tex]