Answer :

Certainly! Let's solve the given equation step by step.

The equation to solve is:
[tex]\[ \left(\frac{1}{4}\right)^{3z - 1} = 16^{z + 2} \cdot 64^{z - 2} \][/tex]

First, let's express all terms with the same base.

### Step 1: Simplify the Right Side

We know that:
[tex]\[ 16 = 2^4 \][/tex]
[tex]\[ 64 = 2^6 \][/tex]

So, we can rewrite the right-hand side as:
[tex]\[ 16^{z + 2} = (2^4)^{z + 2} = 2^{4(z + 2)} \][/tex]
[tex]\[ 64^{z - 2} = (2^6)^{z - 2} = 2^{6(z - 2)} \][/tex]

Now let's combine these:
[tex]\[ 2^{4(z + 2)} \cdot 2^{6(z - 2)} \][/tex]

### Step 2: Apply the properties of exponents

When multiplying exponents with the same base, we add the exponents:
[tex]\[ 2^{4(z + 2) + 6(z - 2)} \][/tex]

Simplify the exponent:
[tex]\[ 4(z + 2) + 6(z - 2) = 4z + 8 + 6z - 12 = 10z - 4 \][/tex]

So the right side becomes:
[tex]\[ 2^{10z - 4} \][/tex]

### Step 3: Simplify the Left Side

Note that:
[tex]\[ \frac{1}{4} = 4^{-1} \quad \text{and} \quad 4 = 2^2 \][/tex]

So:
[tex]\[ \left(\frac{1}{4}\right)^{3z - 1} = \left(4^{-1}\right)^{3z - 1} = 4^{-(3z - 1)} = (2^2)^{-(3z - 1)} = 2^{-2(3z - 1)} \][/tex]

Simplify this exponent:
[tex]\[ 2^{-2(3z - 1)} = 2^{-6z + 2} \][/tex]

### Step 4: Set the Exponents Equal

Now we have:
[tex]\[ 2^{-6z + 2} = 2^{10z - 4} \][/tex]

Since the bases are the same, the exponents must be equal:
[tex]\[ -6z + 2 = 10z - 4 \][/tex]

### Step 5: Solve for [tex]\( z \)[/tex]

Combine like terms and solve for [tex]\( z \)[/tex]:
[tex]\[ 2 + 4 = 10z + 6z \][/tex]
[tex]\[ 6 = 16z \][/tex]
[tex]\[ z = \frac{6}{16} = \frac{3}{8} \][/tex]

So the solution is:
[tex]\[ z = \frac{3}{8} \][/tex]