Given that [tex]\( x = 9 \)[/tex] and [tex]\( x = 6 \)[/tex], make [tex]\( x \)[/tex] the subject of the formula:

[tex]\[ S = W \sqrt{a^2 - x^2} \][/tex]



Answer :

To make [tex]\( x \)[/tex] the subject of the formula [tex]\( S = W \sqrt{a^2 - x^2} \)[/tex], follow these steps:

### Step 1: Rearrange for [tex]\( W \)[/tex]
Start with the given equation:

[tex]\[ S = W \sqrt{a^2 - x^2} \][/tex]

We first need to isolate [tex]\( W \)[/tex] on one side.

### Step 2: Solve for [tex]\( W \)[/tex]
Divide both sides by [tex]\( \sqrt{a^2 - x^2} \)[/tex]:

[tex]\[ W = \frac{S}{\sqrt{a^2 - x^2}} \][/tex]

### Step 3: Apply for [tex]\( x = 9 \)[/tex]
Next, let's apply this to the case when [tex]\( x = 9 \)[/tex]:

[tex]\[ W = \frac{S}{\sqrt{a^2 - 9^2}} \][/tex]
[tex]\[ W = \frac{S}{\sqrt{a^2 - 81}} \][/tex]

### Step 4: Use the value [tex]\( W \)[/tex] in the equation for [tex]\( x = 6 \)[/tex]
Now, we know that [tex]\( W = \frac{S}{\sqrt{a^2 - 81}} \)[/tex]. Next, substitute this into the original equation for the second case when [tex]\( x = 6 \)[/tex]:

[tex]\[ S = W \sqrt{a^2 - 6^2} \][/tex]
[tex]\[ S = W \sqrt{a^2 - 36} \][/tex]

Substitute the value of [tex]\( W \)[/tex]:

[tex]\[ S = \left(\frac{S}{\sqrt{a^2 - 81}}\right) \sqrt{a^2 - 36} \][/tex]

### Step 5: Simplify the equation
Simplify the equation by multiplying both sides by [tex]\( \sqrt{a^2 - 81} \)[/tex] to clear the denominator:

[tex]\[ S \cdot \sqrt{a^2 - 81} = S \cdot \sqrt{a^2 - 36} \][/tex]

This simplifies to:

[tex]\[ \sqrt{a^2 - 81} = \sqrt{a^2 - 36} \][/tex]

### Conclusion
The steps show that the original relationships hold true when substituting values for [tex]\( x \)[/tex]. The solutions and equation:

[tex]\[ W = \frac{S}{\sqrt{a^2 - 81}} \][/tex]

[tex]\[ S = S \cdot \frac{\sqrt{a^2 - 36}}{\sqrt{a^2 - 81}} \][/tex]

confirm that the equation remains consistent when substituting the value of [tex]\( W \)[/tex].