Evaluate [tex]\frac{4(x+5)(x+1)}{(x+3)(x-3)}[/tex] for [tex]x=5[/tex].

A. 15
B. [tex]-\frac{15}{4}[/tex]
C. [tex]\frac{15}{4}[/tex]
D. -15



Answer :

To evaluate the given expression

[tex]\[ \frac{4(x+5)(x+1)}{(x+3)(x-3)} \][/tex]

for [tex]\( x = 5 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 5 \)[/tex] into the numerator:

[tex]\[ \text{Numerator} = 4 \cdot (5 + 5) \cdot (5 + 1) \][/tex]

This simplifies to:

[tex]\[ \text{Numerator} = 4 \cdot 10 \cdot 6 = 240 \][/tex]

2. Substitute [tex]\( x = 5 \)[/tex] into the denominator:

[tex]\[ \text{Denominator} = (5 + 3) \cdot (5 - 3) \][/tex]

This simplifies to:

[tex]\[ \text{Denominator} = 8 \cdot 2 = 16 \][/tex]

3. Divide the numerator by the denominator:

[tex]\[ \frac{\text{Numerator}}{\text{Denominator}} = \frac{240}{16} \][/tex]

Simplify this fraction:

[tex]\[ \frac{240}{16} = 15 \][/tex]

Therefore, the value of the expression when [tex]\( x = 5 \)[/tex] is:

[tex]\[ \boxed{15} \][/tex]

So, the correct answer is [tex]\( \boxed{15} \)[/tex].