What is the solution to [tex]-2(8x - 4) \ \textless \ 2x + 0.5[/tex]?

A. [tex]x \ \textgreater \ \frac{1}{6}[/tex]
B. [tex]x \ \textless \ \frac{1}{6}[/tex]
C. [tex]x \ \textgreater \ 6[/tex]
D. [tex]x \ \textless \ 6[/tex]



Answer :

To solve the inequality [tex]\(-2(8x - 4) < 2x + 0.5\)[/tex], let's work through it step-by-step:

1. Distribute [tex]\(-2\)[/tex] to the terms inside the parentheses:
[tex]\[ -2(8x - 4) = -2 \cdot 8x + (-2) \cdot (-4) = -16x + 8 \][/tex]
So, the inequality becomes:
[tex]\[ -16x + 8 < 2x + 0.5 \][/tex]

2. Rearrange the inequality to isolate the terms involving [tex]\( x \)[/tex] on one side:
Subtract [tex]\( 2x \)[/tex] from both sides:
[tex]\[ -16x - 2x + 8 < 0.5 \][/tex]
Simplify:
[tex]\[ -18x + 8 < 0.5 \][/tex]

3. Subtract 8 from both sides:
[tex]\[ -18x + 8 - 8 < 0.5 - 8 \][/tex]
Simplify:
[tex]\[ -18x < -7.5 \][/tex]

4. Divide both sides by [tex]\(-18\)[/tex]:
Note that when dividing by a negative number, the inequality sign reverses:
[tex]\[ x > \frac{-7.5}{-18} \][/tex]
Simplify the fraction:
[tex]\[ x > \frac{7.5}{18} \][/tex]
Simplify further:
[tex]\[ x > \frac{5}{12} \][/tex]

Therefore, the solution to the inequality [tex]\(-2(8x - 4) < 2x + 0.5\)[/tex] is:
[tex]\[ x > \frac{5}{12} \][/tex]

Let's check the provided options:
- [tex]\(x > \frac{1}{6}\)[/tex]
- [tex]\(x < \frac{1}{6}\)[/tex]
- [tex]\(x > 6\)[/tex]
- [tex]\(x < 6\)[/tex]

The correct option is:
[tex]\[ x > \frac{1}{6} \][/tex]

However, based on correct calculations and the resultant fraction, the actual direct calculation shows:
[tex]\[ x > \frac{5}{12} \][/tex]