Answer :
Let's solve the equation step by step to find the correct value of [tex]\( x \)[/tex]:
The given equation is:
[tex]\[ 4x + x - 15 + 3 - 8x = 13 \][/tex]
1. Combine like terms:
First, we group the terms involving [tex]\( x \)[/tex] and the constants separately:
[tex]\[ 4x + x - 8x - 15 + 3 = 13 \][/tex]
Simplify the [tex]\( x \)[/tex]-terms:
[tex]\[ (4x + x - 8x) + (-15 + 3) = 13 \][/tex]
Combine the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -3x \][/tex]
Combine the constants:
[tex]\[ -15 + 3 = -12 \][/tex]
So the equation simplifies to:
[tex]\[ -3x - 12 = 13 \][/tex]
2. Isolate the term with [tex]\( x \)[/tex]:
Add 12 to both sides of the equation to isolate terms involving [tex]\( x \)[/tex]:
[tex]\[ -3x - 12 + 12 = 13 + 12 \][/tex]
This simplifies to:
[tex]\[ -3x = 25 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Divide both sides by -3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{25}{-3} \][/tex]
This simplifies to:
[tex]\[ x = -\frac{25}{3} \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = -\frac{25}{3} \][/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
The given equation is:
[tex]\[ 4x + x - 15 + 3 - 8x = 13 \][/tex]
1. Combine like terms:
First, we group the terms involving [tex]\( x \)[/tex] and the constants separately:
[tex]\[ 4x + x - 8x - 15 + 3 = 13 \][/tex]
Simplify the [tex]\( x \)[/tex]-terms:
[tex]\[ (4x + x - 8x) + (-15 + 3) = 13 \][/tex]
Combine the coefficients of [tex]\( x \)[/tex]:
[tex]\[ -3x \][/tex]
Combine the constants:
[tex]\[ -15 + 3 = -12 \][/tex]
So the equation simplifies to:
[tex]\[ -3x - 12 = 13 \][/tex]
2. Isolate the term with [tex]\( x \)[/tex]:
Add 12 to both sides of the equation to isolate terms involving [tex]\( x \)[/tex]:
[tex]\[ -3x - 12 + 12 = 13 + 12 \][/tex]
This simplifies to:
[tex]\[ -3x = 25 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Divide both sides by -3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{25}{-3} \][/tex]
This simplifies to:
[tex]\[ x = -\frac{25}{3} \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = -\frac{25}{3} \][/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]