Solve [tex]4|x+5|+8=24[/tex].

A. [tex]x=1[/tex] and [tex]x=-1[/tex]

B. [tex]x=-1[/tex] and [tex]x=9[/tex]

C. [tex]x=1[/tex] and [tex]x=-9[/tex]

D. [tex]x=-1[/tex] and [tex]x=-9[/tex]



Answer :

Sure, let's solve the equation [tex]\(4|x+5| + 8 = 24\)[/tex] step by step.

1. Isolate the Absolute Value:
First, we need to isolate the absolute value term [tex]\(4|x+5|\)[/tex]. To do so, we subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| + 8 - 8 = 24 - 8 \][/tex]
Simplifying this, we get:
[tex]\[ 4|x+5| = 16 \][/tex]

2. Solve for the Absolute Value:
Next, divide both sides by 4 to isolate the absolute value term:
[tex]\[ \frac{4|x+5|}{4} = \frac{16}{4} \][/tex]
Simplifying this, we have:
[tex]\[ |x+5| = 4 \][/tex]

3. Solve the Absolute Value Equation:
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4. Therefore, we have two separate equations to solve:
[tex]\[ x + 5 = 4 \quad \text{and} \quad x + 5 = -4 \][/tex]

4. Solve Each Equation:
- For the equation [tex]\(x + 5 = 4\)[/tex]:
[tex]\[ x + 5 - 5 = 4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -1 \][/tex]

- For the equation [tex]\(x + 5 = -4\)[/tex]:
[tex]\[ x + 5 - 5 = -4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -9 \][/tex]

5. Identify the Solutions:
Therefore, the solutions to the original equation are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

6. Match with Given Choices:
Comparing these solutions with the given choices:
[tex]\[ D. \quad x = -1 \quad \text{and} \quad x = -9 \][/tex]

So, the correct option is
[tex]\[ \boxed{D} \][/tex]