Answer :
To find the element in row 1, column 1 of the matrix [tex]\(-3A + B\)[/tex], we will perform the following steps:
1. Multiply matrix [tex]\( A \)[/tex] by [tex]\(-3\)[/tex] to get [tex]\(-3A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} \][/tex]
[tex]\[ -3A = -3 \cdot \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} -3 \cdot 7 & -3 \cdot (-7) \\ -3 \cdot (-4) & -3 \cdot 0 \end{pmatrix} = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} \][/tex]
2. Add matrix [tex]\( B \)[/tex] to [tex]\(-3A\)[/tex] to get [tex]\(-3A + B\)[/tex]:
[tex]\[ B = \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} \][/tex]
[tex]\[ -3A + B = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -21 + 2 & 21 + 5 \\ 12 + 0 & 0 + (-1) \end{pmatrix} = \begin{pmatrix} -19 & 26 \\ 12 & -1 \end{pmatrix} \][/tex]
3. Identify the element in row 1, column 1 of [tex]\(-3A + B\)[/tex]:
The element in row 1, column 1 of the resulting matrix [tex]\(-3A + B\)[/tex] is [tex]\(-19\)[/tex].
Therefore, the element in row 1, column 1 of [tex]\(-3A + B\)[/tex] is [tex]\(\boxed{-19}\)[/tex].
1. Multiply matrix [tex]\( A \)[/tex] by [tex]\(-3\)[/tex] to get [tex]\(-3A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} \][/tex]
[tex]\[ -3A = -3 \cdot \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} -3 \cdot 7 & -3 \cdot (-7) \\ -3 \cdot (-4) & -3 \cdot 0 \end{pmatrix} = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} \][/tex]
2. Add matrix [tex]\( B \)[/tex] to [tex]\(-3A\)[/tex] to get [tex]\(-3A + B\)[/tex]:
[tex]\[ B = \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} \][/tex]
[tex]\[ -3A + B = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -21 + 2 & 21 + 5 \\ 12 + 0 & 0 + (-1) \end{pmatrix} = \begin{pmatrix} -19 & 26 \\ 12 & -1 \end{pmatrix} \][/tex]
3. Identify the element in row 1, column 1 of [tex]\(-3A + B\)[/tex]:
The element in row 1, column 1 of the resulting matrix [tex]\(-3A + B\)[/tex] is [tex]\(-19\)[/tex].
Therefore, the element in row 1, column 1 of [tex]\(-3A + B\)[/tex] is [tex]\(\boxed{-19}\)[/tex].