Given the matrices [tex]A[/tex] and [tex]B[/tex], compute [tex]-3A + B[/tex].

[tex]\[
A = \begin{bmatrix}
7 & -7 \\
-4 & 0
\end{bmatrix} \quad
B = \begin{bmatrix}
2 & 5 \\
0 & -1
\end{bmatrix}
\][/tex]

Enter the element in row 1, column 1 of [tex]-3A + B[/tex].



Answer :

To find the element in row 1, column 1 of the matrix [tex]\(-3A + B\)[/tex], we will perform the following steps:

1. Multiply matrix [tex]\( A \)[/tex] by [tex]\(-3\)[/tex] to get [tex]\(-3A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} \][/tex]
[tex]\[ -3A = -3 \cdot \begin{pmatrix} 7 & -7 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} -3 \cdot 7 & -3 \cdot (-7) \\ -3 \cdot (-4) & -3 \cdot 0 \end{pmatrix} = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} \][/tex]

2. Add matrix [tex]\( B \)[/tex] to [tex]\(-3A\)[/tex] to get [tex]\(-3A + B\)[/tex]:
[tex]\[ B = \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} \][/tex]
[tex]\[ -3A + B = \begin{pmatrix} -21 & 21 \\ 12 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -21 + 2 & 21 + 5 \\ 12 + 0 & 0 + (-1) \end{pmatrix} = \begin{pmatrix} -19 & 26 \\ 12 & -1 \end{pmatrix} \][/tex]

3. Identify the element in row 1, column 1 of [tex]\(-3A + B\)[/tex]:
The element in row 1, column 1 of the resulting matrix [tex]\(-3A + B\)[/tex] is [tex]\(-19\)[/tex].

Therefore, the element in row 1, column 1 of [tex]\(-3A + B\)[/tex] is [tex]\(\boxed{-19}\)[/tex].