Integers

Fill in the boxes:

1. [tex]\( 6 \text{ more than } -3 = \square \)[/tex]
2. [tex]\( 12 \text{ more than } -60 = \square \)[/tex]
3. [tex]\( 18 \text{ less than } 10 = \square \)[/tex]
4. [tex]\( -216 \div (-12) = \square \)[/tex]
5. [tex]\( (-20) \times (-28) = \square \)[/tex]
6. [tex]\( 6 - 8 - 2 = \square \)[/tex]
7. Additive inverse of 0 is [tex]\(\square\)[/tex]
8. [tex]\(\square \div (-61) = 0 \)[/tex]
9. [tex]\( (-2) \times (-2) \times (-2) = \square \)[/tex]
10. [tex]\( 6 + \square = -5 \)[/tex]
11. [tex]\( [ (1 - 5) \times 2 ] \times (-4) = (-5) \times [2 \times (-4)] = \square \)[/tex]
12. [tex]\( -64 \div \square = 64 \)[/tex]
13. [tex]\( -8 \text{ is less than } -3 \text{ by } \square \)[/tex]
14. [tex]\( 30 \times (-38) + 30 \times 4 = 30 \times (-38 + 4) = \square \)[/tex]
15. [tex]\( (-10) \times (-9) \times (-8) \times (-7) = \square \)[/tex]
16. [tex]\( -[-(-37)] = \square \)[/tex]

Choose whether the following statements are true or false. Tick [tex]\(\Omega\)[/tex] in the box:

(Supply the true/false statements for students to answer, if needed.)



Answer :

Let's carefully solve each part step-by-step.

1. 6 more than [tex]\( -3 \)[/tex]:
[tex]\[ -3 + 6 = 3 \][/tex]
So, [tex]\(\boxed{3}\)[/tex].

3. 18 less than [tex]\( 10 \)[/tex]:
[tex]\[ 10 - 18 = -8 \][/tex]
So, [tex]\(\boxed{-8}\)[/tex].

2. 12 more than [tex]\( -60 \)[/tex]:
[tex]\[ -60 + 12 = -48 \][/tex]
So, [tex]\(\boxed{-48}\)[/tex].

5. [tex]\((-20) \times (-28)\)[/tex]:
[tex]\[ -20 \times -28 = 560 \][/tex]
So, [tex]\(\boxed{560}\)[/tex].

4. [tex]\( -216 \div (-12) \)[/tex]:
[tex]\[ \frac{-216}{-12} = 18 \][/tex]
So, [tex]\(\boxed{18}\)[/tex].

7. Additive inverse of 0:
The additive inverse of 0 is itself, so it is [tex]\( \boxed{0} \)[/tex].

6. [tex]\(6 - 8 - 2\)[/tex]:
[tex]\[ 6 - 8 = -2 \\ -2 - 2 = -4 \][/tex]
So, [tex]\(\boxed{-4}\)[/tex].

9. [tex]\((-2) \times (-2) \times 2\)[/tex]:
[tex]\[ (-2) \times (-2) = 4 \\ 4 \times 2 = 8 \][/tex]
So, [tex]\(\boxed{8}\)[/tex].

8. [tex]\( \boxed{0} \div (-61) = 0 \)[/tex]:
Zero divided by any number is zero.

11.
Here, there is a confusion in the problem statement. However, interpreting what seems asked and equal to:
[tex]\[ (-5) \times (2 \times (-4)) \\ = (-5) \times (-8) \\ = 40 \][/tex]
So, [tex]\(\boxed{40}\)[/tex].

10. [tex]\( 6 + \text{ } = -5 \)[/tex]:
[tex]\[ 6 + x = -5 \\ x = -5 - 6 \\ x = -11 \][/tex]
So, [tex]\(\boxed{-11}\)[/tex].

12. [tex]\( -64 \div \quad = 64 \)[/tex]:
[tex]\[ -64 \div x = 64 \quad \Rightarrow \quad x = -1 \][/tex]
So, [tex]\(\boxed{-1}\)[/tex].

13. -8 is less than -3 by:
[tex]\[ -8 - (-3) = -8 + 3 = -5 \][/tex]
So, [tex]\(\boxed{-5}\)[/tex].

14. [tex]\( 30 \times (-38) + 30 \times 4 = 30 \times (-38+4) \)[/tex]:
[tex]\[ 30 \times (-38 + 4) = 30 \times (-34) \\ = 30 \times (-34) = -1020 \][/tex]
So, [tex]\(\boxed{-1020}\)[/tex].

15. [tex]\((-10) \times (-9) \times (-8) \times (-7)\)[/tex]:
Start from left and move right:
[tex]\[ (-10) \times (-9) = 90 \\ 90 \times (-8) = -720 \\ -720 \times (-7) = 5040 \][/tex]
So, [tex]\(\boxed{5040}\)[/tex].

16. [tex]\( -[-(-37)] \)[/tex]:
[tex]\[ -[-(-37)] = -37 \][/tex]
So, [tex]\(\boxed{-37}\)[/tex].