The function [tex]f(x)=2x^2-3[/tex] is graphed to the left.

Write an expression in terms of [tex]h[/tex] that gives the average rate of change between [tex](2,1)[/tex] and [tex](2+h, f(2+h))[/tex].



Answer :

To find the average rate of change of the function [tex]\( f(x) = 2x^2 - 3 \)[/tex] between the points [tex]\((2, 1)\)[/tex] and [tex]\((2+h, f(2+h))\)[/tex], follow these steps:

1. Identify the coordinates:
- The first point is [tex]\((2, 1)\)[/tex].
- The second point is [tex]\((2+h, f(2+h))\)[/tex].

2. Compute [tex]\(f(2+h)\)[/tex]:
- Here, [tex]\(f(x) = 2x^2 - 3\)[/tex].
- Therefore, [tex]\(f(2+h) = 2(2+h)^2 - 3\)[/tex].

3. Expand and simplify [tex]\(f(2+h)\)[/tex]:
[tex]\[ f(2+h) = 2(2+h)^2 - 3 \][/tex]
[tex]\[ (2+h)^2 = 4 + 4h + h^2 \][/tex]
[tex]\[ f(2+h) = 2(4 + 4h + h^2) - 3 = 8 + 8h + 2h^2 - 3 = 5 + 8h + 2h^2 \][/tex]

4. Calculate the average rate of change:
- The formula for the average rate of change between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] of the function [tex]\(f\)[/tex] is:
[tex]\[ \text{Average rate of change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \][/tex]
- In our case, this becomes:
[tex]\[ \frac{f(2+h) - f(2)}{(2+h) - 2} \][/tex]

5. Substitute the values:
- We know [tex]\(f(2) = 2(2)^2 - 3 = 8 - 3 = 5\)[/tex].
- So:
[tex]\[ \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{(5 + 8h + 2h^2) - 5}{h} = \frac{8h + 2h^2}{h} \][/tex]

6. Simplify the expression:
[tex]\[ \frac{8h + 2h^2}{h} = \frac{h(8 + 2h)}{h} = 8 + 2h \][/tex]

Therefore, the expression in terms of [tex]\(h\)[/tex] that gives the average rate of change between [tex]\((2, 1)\)[/tex] and [tex]\((2+h, f(2+h))\)[/tex] is:
[tex]\[ 8 + 2h \][/tex]