Consider a segment with endpoints [tex]S(-7, -6)[/tex] and [tex]T(2, 4)[/tex].

What is the length of [tex]\overline{ST}[/tex]?

A. 19
B. 3
C. [tex]\sqrt{181}[/tex]
D. [tex]\sqrt{185}[/tex]



Answer :

To find the length of the segment [tex]\(\overline{ST}\)[/tex] with endpoints [tex]\(S(-7, -6)\)[/tex] and [tex]\(T(2, 4)\)[/tex], we'll use the distance formula, which is given by:

[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here, the coordinates of point [tex]\(S\)[/tex] are [tex]\((-7, -6)\)[/tex] and the coordinates of point [tex]\(T\)[/tex] are [tex]\((2, 4)\)[/tex].

First, we calculate the differences in the coordinates:

[tex]\[ x_2 - x_1 = 2 - (-7) = 2 + 7 = 9 \][/tex]

[tex]\[ y_2 - y_1 = 4 - (-6) = 4 + 6 = 10 \][/tex]

Next, we square these differences:

[tex]\[ (9)^2 = 81 \][/tex]

[tex]\[ (10)^2 = 100 \][/tex]

Now, we add these squares:

[tex]\[ 81 + 100 = 181 \][/tex]

Finally, we take the square root of this sum to get the distance:

[tex]\[ \sqrt{181} \approx 13.45362404707371 \][/tex]

So, the length of [tex]\(\overline{ST}\)[/tex] is:

[tex]\[ \sqrt{181} \][/tex]

Thus, the correct answer is [tex]\(\boxed{\sqrt{181}}\)[/tex].