Answer :
Certainly! Let's break down the given equation and solve for [tex]\( s \)[/tex] step-by-step.
1. Starting Equation:
[tex]\[ 2(-3s - 7) = -20 \][/tex]
2. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot (-3s) + 2 \cdot (-7) = -20 \][/tex]
Simplifying this, we get:
[tex]\[ -6s - 14 = -20 \][/tex]
3. Isolate the [tex]\( -6s \)[/tex] term:
To do this, we need to get rid of the constant term on the left-hand side. Add 14 to both sides of the equation:
[tex]\[ -6s - 14 + 14 = -20 + 14 \][/tex]
Simplifying, we get:
[tex]\[ -6s = -6 \][/tex]
4. Solve for [tex]\( s \)[/tex]:
Divide both sides of the equation by [tex]\(-6\)[/tex]:
[tex]\[ s = \frac{-6}{-6} \][/tex]
Simplifying, we get:
[tex]\[ s = 1 \][/tex]
To summarize:
[tex]\[ \begin{tabular}{rl|l|} $2(-3 s-7)$ & $=-20$ & \\ $-6 s-14$ & $=-20$ & \\ $-6 s$ & $=-6$ & \\ $s$ & $=1$ & \\ & Add 14 to both sides. & \end{tabular} \][/tex]
Thus, the value of [tex]\( s \)[/tex] is [tex]\( 1 \)[/tex].
1. Starting Equation:
[tex]\[ 2(-3s - 7) = -20 \][/tex]
2. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot (-3s) + 2 \cdot (-7) = -20 \][/tex]
Simplifying this, we get:
[tex]\[ -6s - 14 = -20 \][/tex]
3. Isolate the [tex]\( -6s \)[/tex] term:
To do this, we need to get rid of the constant term on the left-hand side. Add 14 to both sides of the equation:
[tex]\[ -6s - 14 + 14 = -20 + 14 \][/tex]
Simplifying, we get:
[tex]\[ -6s = -6 \][/tex]
4. Solve for [tex]\( s \)[/tex]:
Divide both sides of the equation by [tex]\(-6\)[/tex]:
[tex]\[ s = \frac{-6}{-6} \][/tex]
Simplifying, we get:
[tex]\[ s = 1 \][/tex]
To summarize:
[tex]\[ \begin{tabular}{rl|l|} $2(-3 s-7)$ & $=-20$ & \\ $-6 s-14$ & $=-20$ & \\ $-6 s$ & $=-6$ & \\ $s$ & $=1$ & \\ & Add 14 to both sides. & \end{tabular} \][/tex]
Thus, the value of [tex]\( s \)[/tex] is [tex]\( 1 \)[/tex].