Suppose you multiplied the cereal box dimensions in a different order:

[tex]\[ V = (x)(4x + 3)(4x) \][/tex]

First, [tex]\((x)(4x + 3) = \)[/tex]

Complete the expression.



Answer :

Sure, I'll provide you with a detailed step-by-step solution.

Let's address the expression step by step.

1. First, we are given the expression:
[tex]\[ V = (x)(4x + 3)(4x) \][/tex]

2. First step: Let's multiply [tex]\(x\)[/tex] by [tex]\((4x + 3)\)[/tex]:
[tex]\[ x \cdot (4x + 3) = 4x^2 + 3x \][/tex]

So, we have:
[tex]\[ (x)(4x + 3) = 4x^2 + 3x \][/tex]

3. Next step: Multiply the resulting expression by [tex]\(4x\)[/tex]:
[tex]\[ (4x^2 + 3x) \cdot 4x \][/tex]

4. Distribute [tex]\(4x\)[/tex] to every term inside the parenthesis:
[tex]\[ 4x \cdot 4x^2 + 4x \cdot 3x \][/tex]

5. Perform the multiplications:
[tex]\[ 4x \cdot 4x^2 = 16x^3 \][/tex]
[tex]\[ 4x \cdot 3x = 12x^2 \][/tex]

6. Combine these results:
[tex]\[ V = 16x^3 + 12x^2 \][/tex]

Therefore, the expression for the volume after multiplying the terms is:
[tex]\[ V = 16x^3 + 12x^2 \][/tex]