Predict how much money can be saved without having a negative actual net income.

\begin{tabular}{|l|r|r|}
\hline Monthly Budget & \begin{tabular}{r}
Budgeted \\
Amount
\end{tabular} & Actual Amount \\
\hline Income & \[tex]$1150 & \$[/tex]900 \\
Wages & \[tex]$25 & \$[/tex]25 \\
Savings Interest & & \\
\hline Expenses & & \\
Rent & \[tex]$400 & \$[/tex]400 \\
Utilities & \[tex]$100 & \$[/tex]80 \\
Food & \[tex]$250 & \$[/tex]200 \\
Cell Phone & \[tex]$75 & \$[/tex]75 \\
Savings & \[tex]$150 & \$[/tex] \\
\hline Net Income & & \[tex]$ \\
\hline
\end{tabular}

a. It is not possible to save any money this month without having a negative actual net income.

b. \$[/tex]170 can be saved resulting in an actual net income of \[tex]$0.

c. \$[/tex]200 can be saved resulting in an actual net income of \$150.

d. As long as you are saving money, you will not have a negative actual net income.



Answer :

To determine how much money can be saved without having a negative actual net income, let's go through the step-by-step calculation of the monthly budget.

### Step-by-Step Solution:

1. Calculate Total Actual Income:
- Actual Income: \[tex]$900 - Actual Wages: \$[/tex]25
- Actual Savings Interest: \[tex]$0 (unspecified) Therefore, the total actual income is: \[ \text{Total Income} = \$[/tex]900 + \[tex]$25 + \$[/tex]0 = \[tex]$925 \] 2. Calculate Total Actual Expenses (excluding savings): - Rent: \$[/tex]400
- Utilities: \[tex]$80 - Food: \$[/tex]200
- Cell Phone: \[tex]$75 Therefore, the total actual expenses (without savings) is: \[ \text{Total Expenses Without Savings} = \$[/tex]400 + \[tex]$80 + \$[/tex]200 + \[tex]$75 = \$[/tex]755
\]

3. Determine Available Money for Savings:
[tex]\[ \text{Available for Savings} = \text{Total Income} - \text{Total Expenses Without Savings} \][/tex]
[tex]\[ \text{Available for Savings} = \$925 - \$755 = \$170 \][/tex]

4. Evaluate Each Savings Option:
We need to check for each savings option if it leaves a non-negative net income.

- Saving \[tex]$0: \[ \text{Remaining Income} = \$[/tex]170 - \[tex]$0 = \$[/tex]170
\]
- Net Income: \[tex]$170 (acceptable since it's non-negative) - Saving \$[/tex]150:
[tex]\[ \text{Remaining Income} = \$170 - \$150 = \$20 \][/tex]
- Net Income: \[tex]$20 (acceptable since it's non-negative) - Saving \$[/tex]170:
[tex]\[ \text{Remaining Income} = \$170 - \$170 = \$0 \][/tex]
- Net Income: \[tex]$0 (acceptable since it's non-negative) - Saving \$[/tex]200 (assuming it was an option):
\[
\text{Remaining Income} = \[tex]$170 - \$[/tex]200 = -\[tex]$30 ] - Net Income: -\$[/tex]30 (not acceptable since it's negative)

From the evaluations, we see that the highest amount that can be saved without having a negative net income is \[tex]$170. Thus, the correct answer is: b. \$[/tex]170 can be saved resulting in an actual net income of \$0.