Answer :
To determine how much money can be saved without having a negative actual net income, let's go through the step-by-step calculation of the monthly budget.
### Step-by-Step Solution:
1. Calculate Total Actual Income:
- Actual Income: \[tex]$900 - Actual Wages: \$[/tex]25
- Actual Savings Interest: \[tex]$0 (unspecified) Therefore, the total actual income is: \[ \text{Total Income} = \$[/tex]900 + \[tex]$25 + \$[/tex]0 = \[tex]$925 \] 2. Calculate Total Actual Expenses (excluding savings): - Rent: \$[/tex]400
- Utilities: \[tex]$80 - Food: \$[/tex]200
- Cell Phone: \[tex]$75 Therefore, the total actual expenses (without savings) is: \[ \text{Total Expenses Without Savings} = \$[/tex]400 + \[tex]$80 + \$[/tex]200 + \[tex]$75 = \$[/tex]755
\]
3. Determine Available Money for Savings:
[tex]\[ \text{Available for Savings} = \text{Total Income} - \text{Total Expenses Without Savings} \][/tex]
[tex]\[ \text{Available for Savings} = \$925 - \$755 = \$170 \][/tex]
4. Evaluate Each Savings Option:
We need to check for each savings option if it leaves a non-negative net income.
- Saving \[tex]$0: \[ \text{Remaining Income} = \$[/tex]170 - \[tex]$0 = \$[/tex]170
\]
- Net Income: \[tex]$170 (acceptable since it's non-negative) - Saving \$[/tex]150:
[tex]\[ \text{Remaining Income} = \$170 - \$150 = \$20 \][/tex]
- Net Income: \[tex]$20 (acceptable since it's non-negative) - Saving \$[/tex]170:
[tex]\[ \text{Remaining Income} = \$170 - \$170 = \$0 \][/tex]
- Net Income: \[tex]$0 (acceptable since it's non-negative) - Saving \$[/tex]200 (assuming it was an option):
\[
\text{Remaining Income} = \[tex]$170 - \$[/tex]200 = -\[tex]$30 ] - Net Income: -\$[/tex]30 (not acceptable since it's negative)
From the evaluations, we see that the highest amount that can be saved without having a negative net income is \[tex]$170. Thus, the correct answer is: b. \$[/tex]170 can be saved resulting in an actual net income of \$0.
### Step-by-Step Solution:
1. Calculate Total Actual Income:
- Actual Income: \[tex]$900 - Actual Wages: \$[/tex]25
- Actual Savings Interest: \[tex]$0 (unspecified) Therefore, the total actual income is: \[ \text{Total Income} = \$[/tex]900 + \[tex]$25 + \$[/tex]0 = \[tex]$925 \] 2. Calculate Total Actual Expenses (excluding savings): - Rent: \$[/tex]400
- Utilities: \[tex]$80 - Food: \$[/tex]200
- Cell Phone: \[tex]$75 Therefore, the total actual expenses (without savings) is: \[ \text{Total Expenses Without Savings} = \$[/tex]400 + \[tex]$80 + \$[/tex]200 + \[tex]$75 = \$[/tex]755
\]
3. Determine Available Money for Savings:
[tex]\[ \text{Available for Savings} = \text{Total Income} - \text{Total Expenses Without Savings} \][/tex]
[tex]\[ \text{Available for Savings} = \$925 - \$755 = \$170 \][/tex]
4. Evaluate Each Savings Option:
We need to check for each savings option if it leaves a non-negative net income.
- Saving \[tex]$0: \[ \text{Remaining Income} = \$[/tex]170 - \[tex]$0 = \$[/tex]170
\]
- Net Income: \[tex]$170 (acceptable since it's non-negative) - Saving \$[/tex]150:
[tex]\[ \text{Remaining Income} = \$170 - \$150 = \$20 \][/tex]
- Net Income: \[tex]$20 (acceptable since it's non-negative) - Saving \$[/tex]170:
[tex]\[ \text{Remaining Income} = \$170 - \$170 = \$0 \][/tex]
- Net Income: \[tex]$0 (acceptable since it's non-negative) - Saving \$[/tex]200 (assuming it was an option):
\[
\text{Remaining Income} = \[tex]$170 - \$[/tex]200 = -\[tex]$30 ] - Net Income: -\$[/tex]30 (not acceptable since it's negative)
From the evaluations, we see that the highest amount that can be saved without having a negative net income is \[tex]$170. Thus, the correct answer is: b. \$[/tex]170 can be saved resulting in an actual net income of \$0.