b) Here are four fractions, labeled A, B, C, and D.

[tex]\[
\begin{array}{cccc}
\frac{3}{5} & \frac{1}{2} & \frac{7}{15} & \frac{17}{30} \\
\text{A} & \text{B} & \text{C} & \text{D}
\end{array}
\][/tex]

Put the fractions, [tex]$A, B, C,$[/tex] and [tex]$D$[/tex] in order of size. Start with the smallest fraction.

[tex]\[
\square \quad \square \quad \square \quad \square
\][/tex]



Answer :

To determine the order of the fractions [tex]\(\frac{3}{5}\)[/tex] (labeled as A), [tex]\(\frac{1}{2}\)[/tex] (labeled as B), [tex]\(\frac{7}{15}\)[/tex] (labeled as C), and [tex]\(\frac{17}{30}\)[/tex] (labeled as D) from smallest to largest, follow these steps:

1. Identify the fractions:
- Fraction A: [tex]\(\frac{3}{5}\)[/tex]
- Fraction B: [tex]\(\frac{1}{2}\)[/tex]
- Fraction C: [tex]\(\frac{7}{15}\)[/tex]
- Fraction D: [tex]\(\frac{17}{30}\)[/tex]

2. List the fractions with their labels:
- A: [tex]\(\frac{3}{5}\)[/tex]
- B: [tex]\(\frac{1}{2}\)[/tex]
- C: [tex]\(\frac{7}{15}\)[/tex]
- D: [tex]\(\frac{17}{30}\)[/tex]

3. Compare their values to sort them:
By evaluating or using known values of these fractions,
- [tex]\(\frac{7}{15} \approx 0.4666\)[/tex]
- [tex]\(\frac{1}{2} = 0.5\)[/tex]
- [tex]\(\frac{17}{30} \approx 0.5666\)[/tex]
- [tex]\(\frac{3}{5} = 0.6\)[/tex]

4. Order these fractions from smallest to largest:
Based on the evaluated decimal values:
- [tex]\(\frac{7}{15}\)[/tex] (label C) is the smallest -> 0.4666
- [tex]\(\frac{1}{2}\)[/tex] (label B) -> 0.5
- [tex]\(\frac{17}{30}\)[/tex] (label D) -> 0.5666
- [tex]\(\frac{3}{5}\)[/tex] (label A) is the largest -> 0.6

Therefore, the order of the fractions from smallest to largest is:

[tex]\[ \boxed{C \quad B \quad D \quad A} \][/tex]